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Factoring Communications and Situational  
Awareness in Operational Models  

of Dismounted Combat 
(STO-TR-SAS-107) 

Executive Summary 

Introduction 
Defence funds dedicated to dismounted soldier systems are finite, and must be divided among multiple 
components. Deciding on the right mix can be difficult – some technologies improve lethality and protection, 
others improve SA. At the same time, these technologies might increase cognitive and physical load. In this 
report we present a way to perform comparisons across this apparent divide, and find the optimal mix of 
technologies. We present a mathematical combat model that considers the joint effects of situational 
awareness, lethality, and protection equipment in terms of expected lives saved. The model can therefore be 
used to design an optimal dismounted soldier system, one that will save the most lives. 

Model 
Our approach relies on representing the decision maker as an optimal one, at all times. That decision maker 
however must make decisions under uncertainty, and time constraints. As cognitive burden increases, several 
changes can occur in the model: the time between decisions might increase, the amount of information 
considered in each decision can decrease, or the planning horizon might be shortened, resulting in more 
myopic decisions. Each of these levers in the model gives the flexibility to represent a degradation of 
decision-making, and SA, while still assuming that the commander is making the best decision possible,  
but under difficult constraints. Technically, our model is based on two pillars. First, combat is modelled as a 
Continuous-Time Markov Chain (CTMC). Second, the commander is modelled as a decision-maker in a 
Partially-Observed Markov Decision Process (POMDP). POMDPs are sequential decision problems that are 
solved by dynamic programming. They are difficult to solve because, contrary to fully observable Markov 
Decision Process (MDPs), some of the state variables are hidden. Fortunately, advanced computational 
methods have been developed to solve them. 

Results 
We implemented a proof of concept, based on a dismounted combat scenario in which a section of  
12 soldiers must secure the entrance of a tunnel. At any time the commander can alter the route, or abort the 
operation, based on the information available at that time. In the scenario we also include an area sensor, 
which could be an Unmanned Aerial Vehicle (UAV), for example. We show how to find the optimal trade-
off between increasing the soldiers’ sensing capacity, and increasing the capacity of the UAV. We also show 
how to find the optimal trade-off between increasing the soldiers’ sensing capacity, and increasing their 
lethality and personal protection equipment. Finally we demonstrate how, by increasing the time interval 
between decisions in the model, we can simulate an increase in cognitive burden, which increases the 
expected lives at risk. 
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Conclusion 
Our model has exploitation potential in the sectors of procurement, capability development, defence S&T, 
and academia. This wide-ranging potential is a tribute to the flexibility of POMDPs, which can be made as 
abstract, or detailed, as wanted. We suggest several avenues for expanding our implementation of the model: 
integrating Bayesian Belief Networks (either in the CTMC and/or the observation model), combining a 
sequence of scenario stages, and exploring other ways to represent cognitive burden. 
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Intégration des communications et de la connaissance 
de la situation dans les modèles opérationnels  

de combat débarqué 
(STO-TR-SAS-107) 

Synthèse 

Introduction 
Les budgets de la défense consacrés aux systèmes de combattants débarqués sont limités et doivent être 
partagés entre plusieurs composants. L’élaboration d’une combinaison optimale demeure difficile : certaines 
technologies améliorent la létalité et la protection, d’autres améliorent la connaissance de l’environnement. 
Dans le même temps, ces technologies peuvent entraîner une augmentation de la charge cognitive et 
physique. Dans ce rapport, nous présentons une méthode pour effectuer des comparaisons portant sur ces 
deux volets en apparence séparés, et obtenir la combinaison optimale de technologies. Nous présentons un 
modèle de combat mathématique qui prend en compte les effets conjoints de la connaissance de la situation 
d’une part, et de la létalité et de l’équipement de protection d’autre part, en termes de vies épargnées 
attendues. Le modèle peut donc être utilisé pour concevoir un système de combattants débarqués optimal, 
capable d’épargner le plus grand nombre de vies. 

Modèle 
Notre approche consiste à représenter le décideur comme étant le meilleur possible, à tout moment.  
Ce décideur doit toutefois prendre des décisions dans des conditions d’incertitude et est soumis à des 
contraintes de temps. A mesure que la charge cognitive augmente, plusieurs modifications peuvent se 
produire dans le modèle : l’intervalle entre les décisions peut s’accroître, la quantité d’informations prise en 
compte dans chaque décision peut diminuer, ou l’horizon de planification peut être raccourci, ce qui entraîne 
davantage de décisions myopes. Chacun de ces leviers du modèle offre la possibilité de représenter une 
dégradation de la prise de décision, tout en supposant que le commandant prend la meilleure décision 
possible, mais sous des contraintes sévères. Techniquement, notre modèle repose sur deux piliers.  
Le premier, le combat est modélisé comme une chaîne de Markov à temps continu (CTMC). Le second,  
le commandant est modélisé en tant que décideur dans un processus de décision markovien partiellement 
observé (POMDP). Les POMDP sont des problèmes séquentiels appelant une décision qui sont résolus par 
une programmation dynamique. Ils sont difficiles à résoudre car, contrairement au processus de décision 
markovien (MDP) parfaitement observable, certaines des variables d’état sont masquées. Toutefois,  
des méthodes de calcul avancées ont été développées pour les résoudre. 

Résultats 
Nous avons mis en place une validation de principe, basée sur un scénario de combat à pied dans lequel une 
section de 12 soldats doit sécuriser l’entrée d’un tunnel. A tout moment, le commandant peut modifier 
l’itinéraire ou interrompre l’opération en fonction des informations disponibles à ce moment-là. Dans le 
scénario, nous incluons également un capteur de zone, tel un véhicule aérien sans pilote (UAV),  
par exemple. Nous montrons comment trouver le compromis optimal entre l’augmentation de la capacité de 
détection des combattants et celle de l’UAV. Nous montrons également comment trouver le compromis 
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optimal entre l’augmentation de la capacité de détection des combattants, et l’élévation de leur létalité et  
le renforcement de leurs équipements de protection individuelle. Enfin, nous montrons comment,  
en augmentant l’intervalle de temps entre les décisions dans le modèle, nous pouvons simuler une 
augmentation du fardeau cognitif, laquelle augmente le nombre attendu de vies en danger. 

Conclusion 
Notre modèle présente un potentiel d’exploitation dans les secteurs de l’approvisionnement, du développement 
des capacités, des sciences et technologies de la défense et des universités. Ce vaste potentiel rend hommage 
à la flexibilité des POMDP, qui peuvent être abrégés ou détaillés à volonté. Nous proposons plusieurs pistes 
pour élargir la mise en œuvre du modèle : intégrer les réseaux de croyances bayésiennes (dans le modèle 
CTMC et/ou le modèle d’observation), combiner une séquence de scénarios et explorer d’autres moyens de 
représenter le fardeau cognitif. 
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Chapter 1 – INTRODUCTION 

When defence departments invest in dismounted soldier systems, they face the difficult problem of finding a 
combination of individual equipment that maximizes a team’s combat effectiveness. They must consider  
kinetic aspects of combat, such as lethality, protection, or mobility, but also informational aspects such as 
communications and Situational Awareness (SA). An optimal solution must conciliate these seemingly disparate 
objectives. While weapons and Personal Protective Equipment (PPE) are well represented in existing combat 
models, the representation of Command, Control, Communications, Computers, and Intelligence (C4I) 
technology is less mature. With the increased range and importance of these devices, their proper representation 
in combat models is indispensable. 

We present a combat model that combines the effectiveness of weapons and the quality of information in a 
common objective function: how they reduce loss of life on the friendly side. Our proof of concept shows how to 
formulate the time-dependent attrition rates, the commander’s observations, and her decision making under 
stress and uncertainty. 

1.1 OBJECTIVES 

The NATO SAS-107 Research Task Group (RTG) had the following objectives [17]: 

1) Determine the key operational factors describing the effects of changing situational awareness in 
dismounted operations e.g. due to the enhancement in soldier technology: 

a) Link operational factors to human performance parameters related to situational awareness; and 

b) Describe the possible impacts of the new technologies in improving situational awareness of the 
dismounted combatant. 

2) Define a methodology for better integrating these operational factors in operational analysis, modelling 
and simulation of dismounted combatant operations: 

a) Determine how different combat regimes affect the requirement for enhanced situational awareness; 
and 

b) Identify output parameters and algorithms which quantify the timing and quality of decisions 
resulting from variations in situational awareness. 

3) As a proof-of-concept of the new methodology, generate a pilot study demonstrating the change in 
operational effectiveness due to variation in situational awareness of the dismounted combatant. 

To address Objective 1 we reviewed the concepts of SA and cognitive workload. This review is presented in 
Chapter 2, with additional details in Annex A. For Objective 2, we identified Partially Observable Markov 
Decision Process (POMDPs) as the best way to integrate the SA idea in a combat model. This method is 
presented in Chapter 3, with a toy application (defence of a combat outpost) developed in detail in Annex C. 
Finally, we addressed Objective 3 by building a complete application based on a dismounted operation.  
This application is described in Chapter 4, with additional details on the scenario in Annex B.  

Our application leverages the excellent Approximate POMDP Planning (AAPL) Toolkit created by the groups of 
Lee Wee Sun and David Hsu at the Advanced Robotics Center (National University of Singapore)1. This toolkit 

 
1  AAPL webpage: http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/; GitHub repository: https://github.com/AdaCompNUS/sarsop. 

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
https://github.com/AdaCompNUS/sarsop
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is based on the SARSOP algorithm developed there by Hanna Kurniawati et al. [14]. The AAPL Toolkit 
provides a very performant, yet generic POMDP solver. The details of each specific problem must be detailed by 
the user in a separate input file. Creating these input files can be a non-trivial task if the problem is relatively 
large. For our application, each input corresponds to a text file of several megabytes that depends on extensive 
calculations. For this we developed a set of Python programs that are found in Annex D, along with a Python 
script to do batch runs and the R script we used to generate the figures found in Chapter 4. 

1.2 BACKGROUND 

Since Endsley’s seminal papers on SA [7], [8] there have been multiple studies and experiments on the role of 
SA in military operations, including past activities under the NATO Science and Technology Organization 
(STO) [1]-[4]. While our objectives included a characterization of SA, our aim was to understand the state of the 
art so that we could properly integrate this concept in the development of a mathematical model of combat. 

Endsley bases the concept of SA on the dynamic nature decision making, and the decision maker’s ability to 
anticipate future states of the world. This task – making optimal sequences of decisions in a familiar but 
uncertain world – is also behind the idea of dynamic programming, the “mathematical theory of multistage 
decision processes” [5]. Nowadays “programming” is associated with coding instructions for computers. In the 
1940’s however, when dynamic programming was coined, “[t]he word programming was used by the military to 
mean scheduling” [15], and dynamic programming was developed as an efficient method for optimizing 
sequences of decisions, which could be applied to decision-making under uncertainty. The method quickly 
outgrew its first military applications, and got extended to many domains of science, engineering, operational 
research, and economics. Dixit and Pindyck suggest applications in social science, to questions of marriage and 
suicide, and in law, to study legal reform and constitutions [6]. 
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Chapter 2 – SITUATIONAL AWARENESS  
IN DISMOUNTED COMBAT 

In an ideal world, a soldier’s observation of reality would be perfect; his information would be complete  
and certain which, of course, is not the case in the real world. Within a real world battlespace, a soldier must 
make discrete decisions, based on incomplete and uncertain information about the state of the battlespace. This 
situation is further complicated by the moderating effects of the various task, environmental and individual 
factors, mentioned in Figure 2-1. Because of this uncertainty – the “fog of war” in other words – it is impossible 
to know the exact state of the battlespace. 

 

Figure 2-1: Conceptual Overview of Manifestation of SA During Combat. 

An important objective of this study is to determine how SA manifests itself in dismounted combat. The output 
of this effort serves as a theoretical/conceptual base for the method we propose in the next section. The definition 
we adopted for SA closely follows Endsley1: 

 

 
1  Endsley’s definition [8]: “Situation awareness is the perception of the elements in the environment within a volume of time and 

space, the comprehension of their meaning, and the projection of their status in the near future.” 

Situational Awareness: The level of individual and shared perception of elements in the battlespace of 
interest within specific intervals in time and space, the comprehension of their meaning and the 
projection of their status in the near future in order to make appropriately informed and timely 
decisions that facilitate the accomplishment of the mission. 



SITUATIONAL AWARENESS IN DISMOUNTED COMBAT 

2 - 2 STO-TR-SAS-107 

 

 

As one can derive from the definition, the three core constructs in understanding SA are perception, 
comprehension and projection. Meaning that a soldier must be able to perceive the observed data and elements 
within its environment, comprehend the meaning and significance of the situation the soldier is in and 
subsequently project possible future states of the situation (including the assessment of the likelihood of these 
possible future states) in order to make a decision and act accordingly. The action’s effect alters the state of the 
environment which, on its turn, is observed by the soldier (and the cycle restarts). This iterative process 
continues until the goal (or objective) is reached or the soldier stops functioning (e.g. the soldier is ordered to 
stop or is not able to continue). Note that this process is moderated by various task and environmental factors 
(e.g. workload, task complexity, stress), as well as individual factors (e.g. preconceptions, training, experience). 
The previous rationale is captured in the conceptual overview, depicted in Figure 2-1. 

A model for representing SA must include a functionality which is able to produce and subsequently feed the 
decision model a ‘noisy’ rendition of reality, with due regard for the various task, environmental and individual 
factors. In response, the workgroup constructed a strawman model of a Bayesian Belief Network (BBN) which 
could fulfill this requirement (see Figure 2-2). This BBN is largely based on the conceptual overview as depicted 
in Figure 2-1. 

 

Figure 2-2: Strawman Model of a BBN for SA in Combat. 

2.1 INTERACTION BETWEEN DECISION MAKING AND COGNITION 

The impact of task, workload and other factors on SA is driven through the likelihood (likelihood of the success 
of the observation) and work rate (any resultant time delay due to the workload affecting the propagation from 
perception to comprehension to projection) of the sub-states of an observation: i.e. the SA parameters. In other 
words we are equating the results of an observation to SA. An expanded discussion of this can be seen in  
Annex A. 
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There are three main elements that contribute to the cognition process: 

1) The task profile; 

2) The workload profile; and 

3) External factors that interact with workload. 

There is a complex and iterative relationship between the decision model and the observation model.  
The parameters that drive the task at hand and the experienced workload can be derived from the decision 
model; these parameters are then propagated through the observation model to give the likelihood of an 
observation happening. The elements of the cognitive process are expanded and presented below. 

2.1.1 Task Profile 
The task profile describes the characteristics of the task at hand, and will determine the external demands that a 
soldiers experiences. There are three components to the task profile which are more extensively described in  
Ref. [9]: 

• Level of information processing: these can be categorized by the Rasmussen task categories of 
information processing: 

• Skill; 

• Rule (TTP); and 

• Knowledge. 

• Time occupied: i.e. the percentage of time that an individual can apply to the observation task: 

• Time. 

• Task Switching: the process of moving between one context or task to another: 

• Number of tasks (would impact on work rate); 

• Number of contexts of task (would impact on work rate); and 

• Separation of information (would impact on likelihood, work rate). 

2.1.2 Workload Profile 
The workload profile could be presented at different levels of detail. As we are working in a limited domain 
(close combat) we could reduce the level of detail needed to encapsulate the workload to a number of pre-
calculated levels, based on our understanding of the close combat environment. 
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Table 2-1: Two Approaches to Representing Workload Profiles for Close Combat. 

 

2.1.3 External Factors that Interact with Workload 
In a group model building session we identified factors from three scientific domains – cognitive, psychosocial 
and physical – that impact cognitive workload [10]. Examples of factors that that interact with cognitive 
workload: 

• Stress / Perceived risk (would impact on likelihood, work rate); 

• Fatigue (would impact on work rate); 

• Physical workload (would impact on likelihood, work rate); 

• Self efficacy (would impact on work rate); 

• Working memory (would impact on likelihood, work rate); and 

• Abilities/training/experience (would impact on likelihood, work rate). 

Not in the model, but factors that also impact workload are: 

• Expectations (construct of decision making method “baseline belief”); 

• Goals and objectives (linked to expectations in decision making method); 

• Personality type / IQ (would impact on work rate); and 

• Usability (would impact on likelihood, work rate). 

Note: not all of these factors have an equal impact, either to each other or in different situations. 

There are two different ways that these factors could be represented within the model. The simple one would be 
to allow them to apply a modifying factor to the overall likelihood of success of observation, however they could 
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also be represented as modifying the fundamental workload and task parameters directly. This second method 
would be a much more realistic way of applying them, but would lead to a much more complex and sophisticated 
model. 

2.2 MEASURING SITUATIONAL AWARENESS 

The workgroup’s review of current methods and models resulted in the following two general findings: 

1) One of the most difficult aspects about methods for assessing SA revolves around measuring SA 
without impacting it. Most available methods do not meet this requirement or postpone assessing the 
amount of SA until after an experiment (or real-life case for that matter). The latter assessment approach 
is fraught with hindsight bias and other unwanted memory related influences and therefore not 
recommended; and 

2) Current methods for assessing SA usually require a lab or field experiment type of setting in order to 
collect data and are often heavily reliant on human test subjects. This type of experiments can easily 
become expensive and time consuming to set up. 

Hence, a cost and time efficient method for assessing SA, without impacting it, is not available. 
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Chapter 3 – METHOD 

In this section we summarize the model, and the theory behind it. It is merely an overview: POMDPs are at the 
forefront of current research in many fields. Their theory is underpinned by decades of developments in 
stochastic modelling and dynamic programming. References such as [13], and in particular [14], have in-depth 
treatment of the formalism. For an overview of how POMDPs relate to other, simpler decision models see the 
example developed in Annex C. 

This section interprets how we use the basic components of POMDPs for the specific task of modelling decision-
making in dismounted combat. 

3.1 INFINITE HORIZON POMDPS 

A POMDP can be formulated over a finite horizon, with a pre-determined ending, or an infinite one where costs 
are discounted every period by a factor ρ ∈ [0, 1), so that the cost function converges. In the proof of concept that 
follows (Chapter 4) we formulate the problem as an infinite horizon one. Formally, such a problem can be 
specified by these seven components1. We provide them here in the same order as in Ref. [14], each with its 
description in the context of our application: 

1) State Space – The set of all possible combat states: three integers representing the number of friendly 
combatants remaining and the number of enemy combatants on each of two approach routes. 

2) Action Space – A set of tactics available to the commander throughout the mission, three in our proof 
of concept: move to (or stay on) the left route, move to (or stay on) the right route, or stop the mission. 

3) Observation Space – The commander’s observations. We formulated them in the same space as the 
combat states: the commander knows her team’s status perfectly at any time, but only has a partial 
observation of the enemy’s status on each route. Her assessment of the enemy’s status is probabilistic, 
and depends on observations made by dismounted soldiers, and the UAV feed. 

4) Transition Probability Matrix – The transition probabilities between combat states. These are the 
same as the attrition rates modelled by Lanchester’s equations. They are dependent on the commander’s 
actions: by choosing a different route, the commander is attempting to minimize the attrition rate on her 
side, and maximize the probability of mission success. 

5) Conditional Observation Probabilities – The probability distribution over observations, conditional 
on the state and the commander’s action. Even if the commander might never fully observe the current 
state, her experience and training provides a mental model of how likely each possible observation 
would be if the system was in a given state. She makes decisions based on that model, and the 
information she receives in sequence. This is where Bayes’ rule plays a role: in solving the POMDP  
we use the observation sequence to calculate the probability of being in each state, conditional on  
the sequence of observations, and assuming optimal decisions by the commander. In effect, we model 
the commander’s decision making. Note that optimal decisions here do not mean perfect: as the 
commander’s sensing degrades – due to cognitive overload for example – she is aware that bad events 
become more likely and adjusts her decision making accordingly, acting more conservatively and 
potentially aborting the mission. 

 
1 Finite horizon problems mostly differ in that the transition probabilities, the conditional observation probabilities, and the cost 

function can be defined independently for each time step. For that reason there is no need for a discount rate. However the final 
costs have to be specified, so the finite horizon case also has seven components. 
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6) Immediate Costs – These incurred at each time step, depending on the previous state, the current state, 
the commander’s current action and, possibly, the observation made (for this application we assumed 
that the cost to enable all observations were already sunk at the beginning of the scenario). The costs 
were all expressed in terms of loss of life. 

7) Discount Rate – Given as a number between zero and one (but strictly smaller than one). As the 
discount rate gets closer to zero, more importance is given to the consequences of immediate events at 
the expense of events in the long term. 

The seven elements above specify a complete POMDP. Solving the POMDP provides two essential pieces:  
the optimal policy, and the expected cost of applying that optimal policy. 

The optimal policy is an instruction set: it provides the best action to take after each observation, so that the cost 
is minimized in the long run. In the infinite horizon case – the one we are interested in – the policy is 
independent of time. In typical applications of POMDPs, such as robot navigation, the optimal policy is an 
important output that is used directly by the robot. However human decision makers are not robots; in our 
application the optimal policy is not meant to be reused. It is merely a model of an optimal decision maker that 
we use for the purpose of simulation. 

The most important output for our application is the expected cost – expressed as the number of lives at risk – 
when a simulated decision maker follows the optimal policy. Our objective is to find how fast this expected 
number of lives at risk decreases as we improve the performance of different sensors, weapons, and protection 
equipment. We can then determine, for fixed budget constraints, the combination that saves the most lives.  
We can also compare different models of how cognitive overload affects combat outcomes. 

One complication is that the optimal policy and its expected cost are not unique: they are a function of the 
system’s starting point, at t = 0. In the simpler, fully observed case (a Markov Decision Process (MDP) – for an 
example see the corresponding section in Annex C), there is a single optimal policy, and the expected cost 
depends on the starting state. However in the more general, partially observed case (POMDP), the initial state 
does not have to be known with certainty. In this case, the optimal policy and the expected cost will be a 
function, not of the initial state, but of a probability distribution over all initial states. Each of these probability 
distributions is called a belief, and the set of all initial beliefs is defined on a (n – 1)–simplex, n being the number 
of states. 

Calculating an optimal policy and an expected cost function for the whole (n – 1)–simplex is expensive,  
and makes most problems impossible to compute in practice. However if one is willing to fix the initial belief, 
the computation required can be reduced by a large amount. This is the approach we used in our application 
(Chapter 4), using the Successive Approximations of the Reachable Space under Optimal Policies (SARSOP) 
algorithm [15]. The initial belief becomes just another component of the scenario. 

3.2 POMDP INPUT 

Solving POMDPs efficiently requires complex algorithms. Fortunately, there are freely available 
implementations2,3. In this section we rather cover how to formulate the model itself. Details on the input 
requirements can be found at http://pomdp.org/code/pomdp-file-spec.html. 

 
2 http://www.pomdp.org/. 
3 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/. 

http://pomdp.org/code/pomdp-file-spec.html
http://www.pomdp.org/
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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3.2.1 Transition Probabilities Between Combat States 
Combat can be modelled mathematically as successive transitions through discrete states. In this application,  
the state variables include the number of combatants remaining on each side. The enemy side is further divided 
in two subgroups, one for each route. The state is therefore given by three numbers. 

We calculate the transition probabilities between combat states using the methods developed for the  
Continuous Time Markov Chain (CTMC). In a CTMC the transition rate between any states is constant in time,  
and therefore follows a Poisson process. Descriptions of the CTMCs and the Poisson process can be found in 
standard textbooks [11], [12], [17]. In combat applications, CTMCs are also referred to as Stochastic Lanchester 
Equations (SLEs). Applications to combat modelling are treated in Refs. [19] and [20]. 

We model the rate of hit for a single shooter and target as the product of the rate of fire, ρ, and the probability of 
hitting the target at each shot: 

 r = ρ P (hit).  (1) 

One important property of CTMCs is that the time to transition between any two states si and sj is random and 
distributed exponentially, with a rate ρi j . Exponentially distributed transition times might seem restrictive and 
limit the application of CTMCs to scenarios in which individual shooters hit targets following a Poisson process. 
However this is not the case. Even if individual shooters are modelled using a different process (e.g. log-normal 
distribution of times between shots), in the limit of many shooters the time between target hits for the whole 
group will appear exponential (see Section 5.9 in Ref. [12]). 

We represent each combat state as a list of integers s of dimension  NG, equal to the total number of subgroups 
(i.e., s ∈ NNG

 ). In this study we consider a case with  NG  = 3: one friendly subgroup and two enemy subgroups, 
one for each available route. The combat state can only evolve in one direction: the number of combatants 
remaining in each subgroup must decrease or stay the same. An additional constraint is that the total number of 
combatants remaining must be at least one. The total number of states that we need to care about, Ns, is therefore 
equal to                                         , where s0 is the initial state. 

Let us construct the Ns-by-Ns transition rate matrix Q = {q(i , j)} for our combat model. For this purpose we 
introduce the NG-by-NG matrices R = {r (k, l)} and Ai = {ai (k, l)}, the latter being a set of Ns matrices  
(one defined for each combat state). 

Each element r (k, l) of R corresponds to the hit rate of a shooter in subgroup k targeting a single member of 
subgroup l. These elements are calculated with Equation 1, using values for ρ (k, l) and Phit (k, l) that can be 
specific to each pair of sub-groups. 

Each element ai (k, l) of Ai represents the fraction of subgroup k’s firepower that is directed at subgroup l,  
in combat state i. Each row k of Ai therefore represents the state-dependent firing policy for the corresponding 
subgroup. Depending on the combat scenario it would be possible to specify different rules for constructing A(i). 
Here we impose three simple constraints. First, since fratricide is not considered, the diagonal elements ai (k, k) 
will all be zero. Elements ai (k, l) will also be zero if subgroups k and l fight on the same side. Second, the non-
zero elements in each row must sum up to one  XXXXXXX . This corresponds to assuming that each 
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subgroup’s firepower is proportional to the number of shooters remaining in that subgroup, and that its firepower 
can be divided efficiently between several target subgroups without any overhead. Third, all non-zero elements 
within a same row will be proportional to the number of combatants remaining in each opposing subgroup. 

Finally let us define v, the index of the subgroup sustaining an incapacitation in transition i → j. 

With R, A and v defined, we are ready to construct Q: 

 (2) 

Since the POMDP is formulated in discrete time, we translated the transition rates of the CTMC to transition 
probabilities for a discrete-time Markov Chain by propagating the CTMC over a chosen time increment ∆t, 
representing the time interval between each decision made by the commander. The CTMC can be solved over 
that interval by computing (I + Qδ∆t)∆t/δs0, where δ is small compared to ∆t, I is the identity matrix and s0 is 
the initial combat state. In practice, this computation is achieved more efficiently using the method of 
uniformization, which is not covered here (see Refs. [17] or [11]). 

3.2.2 Initial Belief – Modelling Imprecise and Inaccurate Intelligence 
Setting the initial belief must be part of the scenario definition. It can reflect the quality of the intelligence at the 
onset, with a more dispersed initial belief corresponding to less precise intelligence. However there is an 
important distinction between the precision of intelligence, and its accuracy. In the case of inaccurate 
intelligence, we rather want to model the consequence making anti-optimal decisions because of biased 
assumptions. This special case must be modelled the following way: first solve the POMDP to obtain the 
optimal policy under the biased initial belief, and then calculate the expected cost of that policy under the 
unbiased initial belief. Finally, solve the POMDP a second time4, under the unbiased initial belief. The 
difference between these two expected costs represents the cost of having biased intelligence. The same 
approach could be used to model the consequence of misinterpreting sensor output. 

3.2.3 Actions 
Through the mission, the commander has several actions available, and makes decisions. These actions have 
consequences for the transition probabilities, the conditional observation probabilities, and the immediate 
rewards. For example, for a case in which a commander has to choose between two approaches, the choice of 
route will affect both the transition probabilities (the attrition rate will change if the number of enemy 
combatants is different between the two approaches), and the observation probabilities (soldiers can only 
observe the number of enemy combatants on the route they travel). Switching between routes might also come at 
a cost, reflecting the additional risk it brings to the mission. 

4  It will not be necessary to solve more than once if the solution over the entire space of initial beliefs is available. 
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Chapter 4 – PROOF OF CONCEPT 

We formulated the problem in a .pomdp format file using Python software written for this project that can be 
found in Annex D. We solved the POMDP using the implementation of the SARSOP algorithm [15], provided 
by its authors at https://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/. 

4.1 SCENARIO 

Generally speaking, military forces are deployed within a mission in order to achieve an effect. They possess a 
number of capabilities which they use to shape the environment, or gain information on it, to achieve their aim. 
Any element within the deployed force can choose to move or to engage (with e.g. sensors or kinetic effects) 
within their delegated authority to achieve their sub-aim. At each level within the ORBAT, from individual 
rifleman to company commander, entities use their situational awareness to determine whether they should: 

• CONTINUE their current plan; 

• AMEND the plan, by making changes which do not affect those not under their command; 

• REPLAN, since the original plan is no longer tenable; and 

• WAIT for further orders. 

The opportunity to make changes to the plan will be limited by the individual’s position within the ORBAT, 
according the range of capabilities that he has under command; for instance, a section second in command has 
rifles and grenade / grenade launchers at his disposal, and possibly a light machine gun, whereas a platoon 
commander has greater firepower, by virtue of numbers, and command of e.g. anti-armor/antistructure systems. 
The relationship between the independent variables (those items which you can change directly and are not 
influenced by other variables) and the effects and measures is shown in Figure 2-1. Battlefield effectiveness 
(within the scope defined in this study) is restricted to having physical effects on the battlefield (neutralising 
enemy / destroying infrastructure) or influence effects (deterring/suppressing the enemy) in order to achieve the 
declared mission. Success can be determined by examining the mission success criteria, which are informed by 
monitoring changes in the mission effectiveness criteria, listed in the ‘Measures’ column. 

We illustrate the combat POMDP method by applying it to the scenario shown in Figure 4-1. This simple 
vignette was inspired by the more extensive scenario described in Annex B. Dismounted soldiers must move to a 
tunnel entrance to secure it. There could be a threat on the way, on either of two routes. The commander chooses 
the approach route based on observations made by her soldiers or a UAV. At any time during the mission she 
can alternate between routes or, if the risk becomes too high, abort the mission. 

Switching between routes was free in the scenario but interrupting the mission came at a cost, to reflect the 
consequence of having to modify the strategy as a consequence of the mission’s failure, hence putting more lives 
at risk in the future. 

https://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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Figure 4-1: Scenario Used in the Pilot Study. 

4.2 RESULTS 

The combat POMDP makes it possible to look at the relative effectiveness of different sensor platforms, or to 
compare the trade-off between improving sensors versus personal protection or weapon lethality. The examples 
found in this section are based on the algorithms found in Annex D. It was not within the scope of SAS-107 to 
design observation models that matched existing sensor technologies; the examples that follow are therefore 
based on notional input parameters, given in Table 4-1. In all cases some of these parameters have been 
overridden, as detailed in the text and figures. For more details, refer to the source code in Annex D, starting 
with tunnelRun.py. 

Table 4-1: Default Parameters Used in the Examples. They are the input to the  
TunnelProblem class constructor (see file tunnelProblem.py in Annex D). 

Parameter Value 
observationModelClass observationModels.DistinctTargetsOM 
nBlueMax 12 
nRedMax 6 
nRedMin 1 
blueEffectiveness 1.0 
redEffectiveness 1.0 
deltaTime .1 
discountRate 0.99 
blueCasualtyReward -1 
interruptReward -1 
probSingleRedDetect_bySoldier 0.1 
probSingleRedDetect_byUav 0.1 
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In future applications of combat POMDPs, we anticipate that most of the scientists’ work will go into translating 
theoretical models of situational awareness, and decision making, into appropriate observation models and 
reward structures. Input parameters such as those listed in Table 4-1 will have to be based on empirical results, 
or at the very least estimates validated by subject matter experts. On the other hand estimating the transition  
rates between combat states should be more familiar to analysts, corresponding to factors from traditional 
models of combat, such as probability of hit, and probability of incapacitation. Some useful references for 
determining the transition rates are found in the combat modelling literature, such as Taylor’s Lanchester Models 
of Warfare [19]. 

4.2.1 Sensor Portfolio Optimization 
In Figure 4-2 we look at equivalent combinations of Unmanned Aerial Vehicle (UAV) sensor versus soldierborne 
sensors performance. The soldier-borne sensors could consist of night vision equipment, for example. 
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Figure 4-2: Finding the Most Effective Sensor Mix. Expected mission cost (blue contours) versus 
enemy detection rate by dismounts, and by UAV. The annotations in red show how results 

like these can be used to find the investment that saves the most lives. 

4.2.2 Finding the Optimal Combination of Sensors, Weapons, and Protection Equipment 

With the combat POMDP, the expected outcome of a mission is given unambiguously in terms of loss of life. 
This unique measure gives the power to look at the trade-off between rather different capabilities. Figure 4-3 
shows a trade-off between soldier-borne sensors and a force multiplier obtained by increasing weapon lethality 
and the effectiveness of personal protection equipment. 
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Figure 4-3: Finding the Best Mix of Sensors, Weapons and Protective Equipment. Expected loss of 
life (blue isocontours) dependent on enemy detection rate by dismounts, and a force multiplier 

corresponding to improvement in the performance of weapons and personal 
protection equipment for blue soldiers. The annotation in red shows a 

notional budget isocontour, with the red dot corresponding to 
what would be the optimal combination of 

performance parameters. 

4.2.3 Modelling the Effect of Cognitive Burden 

One of the parameters in the POMDP model is the time interval between decisions.1 As decisions are further 
spread in time, the commander is exerting less frequent control, and must compensate by making more 
conservative decisions – possibly withdrawing forces earlier to avoid the possibility of heavy casualties. This is 
one way to look at the effect of cognitive burden, with decisions becoming increasingly arduous, and infrequent. 
As the commander’s level of control decreases, we should expect a degradation in the mission outcome. This 
effect is shown in Figure 4-4. 

 
1 See parameter deltaTime in tunnelProblem.py, p. 56. 
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Figure 4-4: Role of Cognitive Overload. Expected lives at risk worsen  
when the delay between the commander’s decisions increases. 

The curve in Figure 4-4 has two essential features. First, the left part of the curve shows diminishing returns: 
reducing the interval between decisions becomes less and less beneficial. This happens because the time between 
decisions is becoming shorter than the enemy detection rate provided by the sensors. The information gain 
during that short period is small, and shortening the decision cycle does not help much. Second, the right part of 
the curve shows that as the time between decisions increases, the decision to withdraw at an early stage (or to 
forego the mission altogether) becomes optimal. Incurring a penalty of -1 becomes preferable to exposing the 
force to heavier losses. 

This example is perhaps the simplest way to represent cognitive burden in the combat POMDP. It treats the 
commander’s cognitive burden as constant through the mission, and does not take into account changes in 
cognitive burden depending on combat outcomes and decisions made. 

A more realistic representation of cognitive burden can be achieved in several ways. The most obvious one 
would be to increase the number of actions available to the decision maker. When actions are added to the model 
(e.g. call and manage medical evacuation), it becomes possible to create a transition matrix, an observation 
model and a reward vector specific to that action. With this additional dimension, the modeller can therefore take 
into account an increase in the time between decisions. Another means would be to adjust the observation model, 
making it less informative as the state of combat becomes more stressful, and therefore degrading the expected 
combat outcome. 
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Cognitive burden might also result in the misinterpretation of sensor outputs. This phenomenon might be best 
simulated using the approach we suggest in Section 3.2.2 for modelling inaccurate intelligence. 

In any case, representing cognitive burden in a combat POMDP must be supported by empirical data, or expert 
opinion. 
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Chapter 5 – CONCLUSION 

Our test case shows how POMDPs can be used to explore trade-offs in investing between disparate technologies 
such as weapons and personal protection, and portable information technologies. It allows to derive an optimal 
portfolio of technologies for soldier systems. On one hand, the model is based on concepts such as dynamic 
programming and Markov chains, requiring a mathematical background that is typical of graduates in 
operational research. On the other hand, interpreting the model’s output is accessible to decision makers from a 
broad range of backgrounds. 

With regards to Exploitation Potential, we foresee four avenues for the extension and exploitation of the 
model: 

• Procurement: 

• Quantify the value of portable C4I technology in combat; 

• Support the definition of user requirements; and 

• Support bid evaluations. 

• Capability Development: 

• Explore the balance between kinetic and intelligence resources during the development of  
Concepts of Employment (CONEMP) and Concepts of Operation (CONOP); and 

• In the development of Techniques, Tactics and Procedures (TTP), characterize the potential of  
new portable C4I technology on SA (and ultimately on dismounted combat effectiveness). 

• Defence Science and Technology: 

• Assess the effects of cognitive burden on dismounted combat effectiveness; and 

• Elicit new research directions. 

• Academia: 

• As an additional approach to conducting fundamental research in the field of cognitive science and 
military operations research. 
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Annex A – COGNITIVE WORKLOAD FRAMEWORK 

This annex presents the background concepts to SA and discusses the impact of other factors on its acquisition. 
It is important to understand that SA is a conceptual construct that helps the rationalization and discussion of the 
amount and quality of understanding that an individual has of the situation in which they are. Within our context, 
there are three aspects that directly impact on the ability of an individual to gain understanding; these are: 

• The understanding of the current intent; 

• The division of activities between contexts, such as reviewing a map, monitoring the horizon, etc.; and 

• The cognitive workload of both undertaking the tasks and concurrently constructing that understanding. 

The following subsections discuss each of these aspects in turn. 

A.1 INTENT 

Intent is the driver that determines the relative importance of information that is being fed to the individual.  
It can be argued that an individual is constantly receiving information from their senses (sensors) and is 
constantly monitoring this for information that helps build the higher level understanding (comprehension) of the 
situation. A simple example is that the key pieces of information for a soldier trying to identify IEDs and a 
botanist trying to identify where rare plants may be found are significantly different, even though the effective 
ground truth (i.e. the ground and ground cover that they are looking at) could be the same. 

Therefore the intent is critical in the determination of what information is relevant and useful. 

The intent also impacts on the transition between the perception of elements in the environment to the 
comprehension of those perceived elements and the prediction of likely futures. A simple example is when 
approaching a T junction where you wish to merge with the flow of traffic: perception is concerned with each of 
the oncoming vehicles and their distance and speed, moved to a comprehension that there is a gap between the 
vehicles and a prediction that that gap will remain as the traffic flow moves past you. In this case, the number of 
vehicles is actually irrelevant; it is the gaps within the stream of vehicles that is important. The intent means that 
the desired “observation” that will trigger an individual’s SA is a gap in the flow and the way that that gap is 
moving. 

In the first example (the field) it is the perceptive aspects building the SA that are affected by the intent, in the 
second example (the traffic) it is the comprehended and predictive aspects that are affected by the intent. 

In a military context it is assumed that the intent is encapsulated by the “Commander’s intent”; however 
individuals can have multiple intents (both tacit and implicit) that either overlap or, in certain circumstances, 
conflict. In their processing of comprehension and prediction, an individual may well apply some “fuzzy logic” 
to the relative importance of the different intents that they currently hold. 

The individuals within a team are likely to have different individual perceptions of these intents. However a 
well-trained team will have complementary individual intents and will have a collective understanding of the 
relative importance of their different intents. 
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A.2 TASKS 

At the task level there are also aspects that require understanding. During an activity it is extremely rare for an 
individual to only be conducting one task within a time “window”: effectively all individuals “time slice”. A task 
may require an individual’s attention to be focused on a specific subset of their environment: e.g. when looking 
at a map or the output of a digital sensor, you cannot simultaneously monitoring the horizon and therefore, at that 
precise moment, would have less chance to acquire information from another source. 

This is not an absolute “an individual can only do one thing at a time”: as is discussed in the section on 
workload, an individual’s capacity can expand to encompass what might normally be considered an excessive 
amount of activity in extreme circumstances. 

Across a team, there is also likely to be a difference in their division of activities: i.e. the Commander is likely to 
spend more time on a map and on command nets than an individual soldier. 

This time slicing is affected by: the type of task it is, i.e. whether it is skill-based, rule-based or knowledge-
based; the time occupied; and aspects to do with the process of switching contexts, i.e. number of tasks, number 
of contexts and the separation of data across contexts. The problem here is that some of these aspects sit outside 
the profile for a particular sensor and are driven by the combination of sensors and contexts available. 

In addition, switching between tasks also cost resources. So one should avoid unnecessary switching between 
tasks. 

A.3 COGNITIVE WORKLOAD FRAMEWORK 

For our purposes, cognitive workload is best described by Wickens’ Multiple Resource Theory (see Figure A-1). 

 

Figure A-1: Multiple Resource Model by Wickens. 
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Put simply, this theory presents a number of resource buckets related to the three dimensions of inputs, 
processing stages and reasoning/actions/decisions. As can be seen, each of these is subdivided into a number of 
resource areas that can be called on by an individual performing a task. This allows for a soldier to monitor a 
radio net whilst monitoring the horizon for other information. 

These resources become important in two ways:  

1) They force the separation of tasks into contexts (see above); and  

2) They predict conflicts of resources that would reduce the individual’s ability to achieve that task. 

In our context, this manifests itself as: in times of high workload, there is a constraint on the individual to 
accommodate new information and then process it. I.e. an individual may have too high a workload to perceive 
something in the first place, but even if it is perceived the workload may be too high for the individual to use that 
to comprehend an aspect of the situation, or to project the consequence of that information up to the level of 
prediction of its influence. 

It should be noted that there is not an absolute limit on the cognitive workload for any individual: people adopt 
coping strategies and can cope with peaks of high workload that vastly exceed the level that is manageable over 
an extended period of time. There is also a significant variation between individuals as to the level of cognitive 
workload that they can accommodate. 

A.4 IMPACT ON SITUATIONAL AWARENESS (SA) 

From the discussion regarding intent, we can say that the observations that we are tracing through the model 
would inherently embody the three levels of SA. 

From the task level, we can accommodate the centre of focus modality.  

From the workload, we can accommodate the overall cognitive burden. 

The consequence of this is that we may need to associate the level of workload to whether or not the observation 
is perception, comprehension or prediction based: i.e. the workload may allow an individual to perceive 
something but not then directly process it into their comprehension, or comprehend it but not then be able to 
directly process it into prediction. It is not reasonable to assume that, if you have been able to perceive the object 
but at that time not been able to comprehend its significance, over the next time period you would not then be 
able to process it, unless during the subsequent time steps you were also restricted by workload. 

The overall SA would have parameters of likelihood and time (delay). 
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Annex B – MILITARY SCENARIO 

B.1 GENERAL 

The UK provided a generic military scenario for the model, based on the action of a light role platoon within a 
company level operation, as part of an expeditionary NATO force. Tactical movement at platoon level is usually 
by foot, although in this case, initial deployment is by support helicopter from a ship. The only vehicle organic to 
the platoon is a four wheeled All-Terrain Vehicle (‘quad’), which is not deployed with the platoon in this 
example. 

B.2 ENVIRONMENT 

The ground on which this operation is being conducted is rural and rugged. There is much forestation (copses 
and larger woods), which restrict visibility to short ranges. These features can be easily negotiated by foot 
soldiers, but vehicles are confined to tracks and roads. The host nation’s population is largely centred on urban 
centres, but there are small settlements to support the exploitation of the forest. The weather is temperate. 

B.3 ENEMY FORCES 

In this scenario, the enemy force comprises irregular (militia) personnel, usually operating at no higher than 
platoon level (typically at a section level of 8 to 10 strength). They do not have heavy weapons / vehicles, 
preferring the use of IEDs, ambush and other harassment activity – rather than conventional “collective” action. 

B.4 FRIENDLY FORCES MISSION 

• Company – “A” Company (Coy) is to secure a road tunnel which is assessed as a key point, the security of 
which must be guaranteed to allow an armoured infantry brigade unimpeded passage through it northwards 
as part of the higher level plan, on a Main Supply Route. A Coy deploys by helicopter at night to locations 
just east of the tunnel. The mission is to clear reported enemy irregular / militia units (anticipated to be no 
more than section strength) from either end of the tunnel, secure it and provided a secure environment for 
the passage of the brigade through the area. 

• Platoon – The scenario focuses on 1 Platoon (1 Pl), which has 4 tasks: 

1) Insert by support helicopter then move to the area of the northern end of the tunnel;  

2) Clear enemy from the northern end of the tunnel and a nearby road bridge;  

3) Protect the north end of the tunnel and provide area security; and 

4) Move 2 km north and occupy a farm complex at a T junction where another road intersects the route 
to be used by the armoured brigade.  

This is shown graphically below. 
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Figure B-1: Platoon Tasks. 

B.5 MAIN EVENTS LIST 

Starting from this scenario, an MEL was constructed for 1 Platoon’s tasks. It captures: 

• Sub tasks within those described above; the source of the information / direction which will form the 
commanders’ and soldiers’ initial Situational Awareness (SA) at the start of each sub task. 

• A likely ‘stressor’ – an event or lack of knowledge, which make the local successful execution of the 
sub task as per the original plan an issue. 

• The source of the fact that there is now a new situation – either ‘internal’ to the platoon, e.g. contact 
with the enemy with casualties taken, or ‘external’, e.g. information or intelligence from company HQ. 

• The potential consequences to the execution envisaged in the original plan, as captured in the orders 
given to the platoon commander and from him/her to the soldiers through section commanders. [These 
unexpected events will place demands upon the ‘Observation’ and ‘Decision’ models.] 

B.6 VIGNETTE 

The full scenario and MEL within it are both rich and wide ranging. Here, as an example, we describe one 
vignette in more detail: a contact during the dismounted approach to the tunnel: 

• 1 Platoon unexpectedly comes under small arms fire from an unknown number of enemy forces and 
suffers a number of casualties. 
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• The firing stops almost as soon as it began and the lead section commander reports the sounds of enemy 
withdrawing in the general direction of the tunnel. 

• Whilst the number of casualties, the locations of the casualties and the severity of their wounds are 
being clarified, the Platoon Commander must decide whether he: 
• Goes firm in his current location and await reinforcements (or even withdraw) since he can no 

longer complete the mission given to him with the allocated resources. 
• Continues with his mission as initially planned and on the intended route. (Does he have sufficient 

troops to achieve the yardstick of 3:1 superiority in the attack on the tunnel? Have the enemy forces 
withdrawn completely or are there further pockets, which might mean selecting a different route?) 

• Continues with his mission, but in a different manner, e.g. using a different route. (What routes 
exist? Might there be enemy forces in different locations? Could he call for fire support?) 

• The Platoon Commander needs to augment the base SA gained from the initial company Orders Group. 
He needs different observations to provide better understanding of enemy locations and options for a 
different route. His principal sources of information are internal to the platoon; observations are 
gathered by soldiers, using eyes, ears and issued surveillance devices and/or weapon sights. 
Observations are shared by voice directly between soldiers and between the commanders on a tactical 
VHF radio. Current radios will have narrow bandwidth and will not be capable of passing data, images 
or video. 

• In this instance, it is confirmed that there are 3 casualties – all wounded; there are no reports of any 
enemy remaining on the original route, or of a greater than expected enemy force (8 to 10 people) at the 
tunnel. The contact conforms to the known enemy tactic of ambush and although the platoon has 
suffered the stressor of 3 casualties, it still can meet the 3:1 yardstick for the attack, which in any case 
will be against militia forces. The Platoon Commander decides to follow his original plan. 

B.7 APPLICATION OF THE TECHNIQUES CONSIDERED IN THIS REPORT 

• The tactical actions described above relate to the observation and decision models. 

• Observations could be improved by some or all of the measures set out below (which is not an exhaustive 
list): 

• Provide the platoon’s soldiers with improved sensors and sights, so that they have an increased 
capability to detect, recognise and identify enemy positions and strengths. 

• Provide the platoon with improved C4I capability, such as Dismounted Situational Awareness, so that 
awareness of the changing tactical situation can quickly be both established and shared. 

• Provide enhanced ISTAR capability to the platoon, e.g. an Unmanned Air System to deliver a different 
view of the situation ahead of the platoon. 

• Provide the platoon with increased communications bandwidth, so that pictures and/or possibly video 
could enhance direct line of sight observation. 

• If successful, the technique could provide an analysis of consequences and cost that would follow the 
adoption of such measures. 
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Annex C – AN ILLUSTRATION OF MDPS AND POMDPS USING 
A THREE-STATE MODEL OF A COMBAT OUTPOST 

In this section we model a combat outpost in turn as a Markov Reward Process (MRP), a MDP and a POMDP. 

Let us imagine a dismounted unit having responsibility over a geographic area. Threats come in and out of the 
area. If unchecked, they could attack the outpost. The cost in having to defend against an attack is high. In order 
reduce the probability of an attack, combat patrols are scheduled. Increasing combat patrols decreases the 
probability of an attack, but also comes at a cost as these resources cannot be allocated to other mission 
objectives. 

In the next sub-sections we first construct the scenario as a Discrete Time Markov Chain (DTMC), then 
incrementally add elements of a decision network around it, introducing a utility node in the MRP, an action 
node in the MDP, and finally an observation model to obtain a POMDP. 

C.1 MARKOV CHAIN 

Discrete Time Markov Chains (DTMCs) represent the evolution of a system as random transitions between 
discrete states, in discrete steps, with known transition probabilities between each. In practice these probabilities 
are represented as entries in a matrix, the transition matrix. Using the transition matrix it is possible to calculate 
different quantities, such as the expected time to reach one state from another, or the time spent in each state 
when the system runs for some time. 

The defining property of all DTMCs, as any Markov process in general, is that they are memoryless: 
the subsequent evolution of a system only depends on the current state; it is independent of any state visited 
previously. The memoryless property can seem a stronger restriction than it actually is. A Markov chain can be 
constructed so that the system will never come back to some state visited previously, and states that only link 
back to themselves are called absorbing states. These features are particularly useful to represent attrition in 
combat models. 

Figure C-1 shows the combat outpost problem as a Markov chain, including the state diagram, the transition 
matrix (T) and a graph of pa(x), the transition probability from threat to attack. 

Each time step in the model can be imagined as one day. Starting in the no threat state, there is one chance in 
five (0.2) that it enters the threat state on any given day. From then, the threat either exits the area, returning the 
system to the no threat state, or attacks the combat post, moving the system to the attack state. The transition 
probabilities for these events depend on the number of patrols in the area, x, according to the following formula: 

pa (x) = α(1 −β)x. (3) 

For the example we chose α = 0.5 and β = 0.5. Figure C-1(c) shows pa(x) with these values. 
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(b) Transition matrix. 
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(c) Probability of attack, pa , versus the number of patrols, 
x. Without patrols the probability of a pre-existing threat 
mounting an attack on the outpost is 50%.  

Figure C-1: Discrete Time Markov Chain for the Combat Outpost Example. 

C.2 MARKOV REWARD PROCESS (MRP) 

C.2.1 Description 
Markov Reward Processes (MRPs) add to DTMCs the idea of a reward (or penalty) associated with entering 
each state. This feature is illustrated in Figure C-2(a), a simple example of a decision network. The diagram 
depicts the dependency of the reward (penalty) R on the state S. At this stage the diagram is too simple to be 
useful: it only includes a random node (circle) and a utility node (diamond). As we progress to the next sections 
however the MDP will add an action node (square) and the POMDP an observation model (another type of 
stochastic node). Decision networks and their components will not be discussed further in this document. Details 
can be found in Ref. [13], Chapter 3. 
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(a) Decision Network for the MRP (b) Reward Vector 

Figure C-2: Markov Reward Process. 
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Figure C-2(b) shows the reward vector. It is negative (a penalty). Like the attack probability (Equation 3),  
it depends on x, the number of patrols. In the MRP, x can only be chosen once at t = 0. The number of patrols is 
therefore fixed at the onset, and is the same for all states. 

C.2.2 Optimal Value for x 

Our goal is to select an optimal number of patrols, x. It is the value that minimizes the average cost of running the 
combat outpost. This quantity is referred to as the expected utility. It is denoted as Ut(s), where t is the step index 
and s is the initial state. When calculating Ut(s), we usually discount the value of future events by a factor between 
zero and one. All other things being equal, it means that imminent events are considered more important than later 
ones. To make an analogy, having to pay a dollar now is always worse than paying a dollar later. However the 
preference for paying a dollar now versus paying two dollars later depends on the time elapsed, and one’s discount 
rate. For the purpose of this example we fix γ = 0.9, simply because it allows for a quick convergence.1 

When the time elapsed is long enough and γ < 1 then Ut(s) converges. The index t can then be dropped.  
The value of U(s) can be calculated iteratively with the following formula: 

  (4) 

where R is the immediate reward and the T’s are the transition probabilities (Figure C-1(a)). 

Note that both R and T depend on x, the number of patrols. We have shown in Figure C-1(c) that patrols reduce 
the probability of an attack (and incurring a strong penalty of -100); however there are diminishing returns in 
increasing x too much. On the other hand, the reward vector (Figure C-2(b)) shows that the cost of patrols 
increases linearly with x. Passed a certain value, the patrols will cost more than the marginal dissuasion they 
provide. To find the optimum value of x, we solve Equation 4 from x = 0 until the maximum value of U is found. 
Figure C-3 shows the value of U(s = no threat) versus x for γ = 0.90. The optimal number of patrols is x = 2, 
resulting in U = – 38.0. 

 

Figure C-3: Long-Term Expected Utility for the Outpost MRP versus x, the Number of Patrols, 
Assuming the Initial State “No Threat” and a Discount Factor of 0.9 per Step. 

 
1 If γ = 0.9 then γ30 ~ 0.042. Taking 1 step per day as a guideline in the outpost example, this means that we discount events to occur 

a month from now by 96%. This discount might be too high if the model was for an actual application, rather than an example. 
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C.3 MARKOV DECISION PROCESS (MDP) 

C.3.1 Description 

Like MRPs, MDPs are models in which random events are formulated as a Markov chain and include rewards 
and/or penalties. An additional feature is that several actions are available to the decision-maker. These actions 
give some pre-defined control over the transition probabilities, T, and the rewards, R, at each step of the system’s 
evolution. 

The decision maker faces the problem of finding an optimal policy: a list of actions to execute in each state in 
order to maximize rewards (minimize penalties), as given by the expected utility U(s). The choice of an optimal 
policy is not necessarily obvious. Systematically choosing the highest immediate reward for example might be a 
sub-optimal strategy in the long run. Typically, solving the Bellman equation by the method of dynamic 
programming allows to find an optimal policy [5]. In the long-run and with a discount rate γ < 1, the optimal 
policy converges to a single action for each state of the DTMC. 

Figure C-4(a) shows the decision network for the MDP, with a reward node R and an action node x.  
In comparison with the MRP, the reward (truly, a penalty in our example) is now dependent on two factors: the 
state S and the action x. 
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R(s, x) = − 
 

 

x=0 x=1 x=2  
no threat 0 1 2 · · · 

threat 0 1 2 · · · 
attack  100 101 102 · · · 

 
 

(a) Decision Network for a MDP (only one step is 
shown). The square node indicates the possibility  

of a choice of action (x) by  the decision maker. 

(b) Reward Matrix. At each step, the decision maker 
can choose a value for x. In the long run,  

there is a single best x for each state. 

Figure C-4: Markov Decision Process. 

C.3.2 π*(s): Optimal Policy Over the States 
In the MRP we were limited to choosing a single optimal value for the number of patrols x. The MDP provides 
more control: an optimal number of patrols must be found for each state separately. In general, finding an 
optimal policy for an MDP can be accomplished using a dynamic programming algorithm. Our example is so 
simple however that the solution is almost trivial. We already know from the transition matrix (Figure C-1(a)) 
that transitions from the no threat and attack states are independent of x. In these cases the only choice left is to 
minimize cost and choose x = 0. At this point the choice of an optimal policy comes down to choosing the best 
value for x in the threat state. To do this optimization we proceed the same way as in the MRP case, using a 
slightly modified version of Equation 4: 
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   (5) 
  

where π(s) is the policy. In comparison with the MRP, the choice of x is no longer fixed for the whole system; in 
a MDP it is state-dependent. 

Equation 5 is used to optimize π(s = threat) in a manner similar to the MRP case. Figure C-5(a) shows the value 
of U(s = no threat) versus x for γ = 0.90. The optimal number of patrol in the threat state is x = 5 (meaning that 
π(s) = [0, 5, 0] if states are ordered as no threat, threat and attack), resulting in U = – 9.8. This is a large 
improvement over U = – 38.0 in the MRP case, attributable to the finer control allowed in the MDP. 
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  State (s )   Action (x ) 

no threat 0 
threat 5 
attack 0 

 
(a) Expected Utility for the Outpost MDP versus π* (s = Threat),  

the Optimal Number of Patrols Assuming the No Threat  
State and a Discount Factor γ = 0.90. 

(b) Optimal Policy for the MDP. 
 

Figure C-5: Expected Utility, and Optimal Policy for the Outpost MDP. 

C.4 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP) 

C.4.1 Description 
In a MDP, the decision maker is aware at all time of the state. POMDPs remove that assumption. In our example 
the knowledge of a threat becomes probabilistic. Moreover, the probability of detecting a threat can be made to 
increase with the number of patrols, x. For that purpose, an Observation model O is included in the decision 
network (Figure C-6(a)). The Observation model takes into account imperfections in our knowledge of the state, 
in other words the SA. Observation models are conditional probability distributions P(o|s, a). As such they can 
be represented by a Bayesian network (BN). In our simple example however the observation model is simple 
enough that we will not recourse to a BN. 
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(a) Decision Network for the POMDP. An observation 
model O has been added. O is typically a Bayesian 

network, composed of several random nodes.  
It is coloured gray to denote that fact. 

(b) Reward Matrix (same as for MDP). 

Figure C-6: Partially Observable Markov Decision Process. 

While the policy in a MDP can be given as a simple table (Figure C-5(b)), in a POMDP it requires a policy 
diagram. Note that for dismounted combat applications we are less interested in determining optimal actions 
(tactical commanders are already trained for that) than assessing how changes in SA might affect combat 
outcomes. 

In a POMDP, the observation model can be dependent on the action. Let us imagine that the probability of 
detecting a threat increases with the number of patrols: 

 pdetection = 1 – (1 – κ)x . (6) 

Figure C-7 shows the probability function if we choose κ = 0.3. 

����������� 

�� 

 
 

      

 
����       

 

��� 
 

 
���� 

κ=0.3  

 
      

 

     
     

    
    

 

     
     

    
    

 

     
     

    
    

 
 

Figure C-7: Probability of Threat Detection (Equation 6) Using κ = 0.3. 



ANNEX C – AN ILLUSTRATION OF MDPS  AND POMDPS 
USING A THREE-STATE MODEL OF A COMBAT OUTPOST 

STO-TR-SAS-107 C - 7 

Figure C-8 shows the dependence of observations on state and action. 

P (O|s, x = 0) = 

P (O|s, x = 1) = 

...

P (O|s, x = 10) = 

O(no threat) O(threat) O(attack)
no threat 1 0 0 

threat 0.7 0.3 0 
attack 0 0 1 

O(no threat) O(threat) O(attack) 
no threat 1 0 0 

threat 1 0 0 
attack 0 0 1 

O(no threat) O(threat) O(attack)
no threat 1 0 0 

threat 0.03 0.97 0 
attack 0 0 1 

(7) 

The expected utility can then be given as a function of any belief vector b(s) by summing over the Uπ(s): 

(8)

Figure C-8: Observation Model. Oo(s, x) is the Probability of Observing o when the System 
State is s and the Action (Number of Patrols) is x. The middle row of Othreat corresponds  

to the graph on the left. The middle row of Othreat is the complement. 

C.4.2 π*(b): Optimal Policy Over Beliefs
In the MDP cases we found an optimal policy π* over the states s. It was a vector of length three, with one 
optimal action for each state. The POMDP case is different: observations have uncertainty attached to them. 
Most of the time we do not know the current state of the system with certainty. Rather, we maintain a probability 
distribution over all states, reflecting our current belief. Instead of a function over discrete states we now have 
one over a simplex, which is continuous space between vertices, one for each state. A “belief” is a point in that 
simplex. The closer it is to one of the vertices, the more we believe the system to be in the state associated with 
that vertex. Policies and the expected utility must therefore be defined on that continuous space, rather than the 
discrete set of states as in the MDP. 

While the combat outpost example has three states, we constructed the observation model (Figure C-8) to make 
the detection of the attack state perfect. The interesting part of the belief space is therefore limited to a line 
between the no threat and threat states. From here on, we will assume that a t = 0, we have perfect knowledge 
that the system is in the no threat state. 

For the purpose of computing U(s) in the POMDP we modify Equation 5 by adding a step where beliefs are 
updated at each step based on the latest observation: 
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Instead of determining an optimal policy over the states, we compute it over the initial beliefs. We use the 
observation model to take into account each subsequent observation. The POMDP policy is then expressed as a 
set of trees, each tree associated with a single interval of the initial belief space. Figure C-9(a) shows the set of 
trees in a somewhat compressed form. With our assumption that we start in the no threat state with perfect 
certainty, we should begin at the leftmost node (with action 0). The plan is then to follow at each step the branch 
corresponding to the latest observation. As can be seen from the graph, the policy tree takes a few steps to 
stabilize. Some nodes disappear since our simple observation model limits us to only a few sub-regions of the 
belief space. Initially however we could have any degree of belief. This diagram also allows us to choose the 
optimal action when information comes in from outside of the observation model, allowing us to re-calibrate our 
actions by starting at the top of the diagram again. 

C.5 EXAMPLE: WHAT IS THE VALUE OF IMPROVING THE THREAT
DETECTION PROBABILITY? 

In the last section we introduced the POMDP idea using κ = 0.3 in Equation 6. In this section we compare that 
previous case (referred to as baseline) to an improved one, this time assuming κ = 0.5 in Equation 6. 
By comparing the expected utilities in both cases, we can see how POMDPs give us the ability to quantify the 
value of SA. 

Figure C-9: Optimal Policy (π* (b)) for the POMDP: Policy Graph. The number in each node 
corresponds to the optimal action at each point.  Green lines indicate the optimal action  

following “no threat” observations, orange lines for “threat” observations and purple  
ones for “attack”. Brackets at the top of each column correspond to ranges  

in the belief space between the no threat and threat states. 
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Figure C-10: Optimal Policy (π* (b)) for the POMDP: Long-Term Expected  

Utility for the POMDP versus the Initial Belief. 

C.5.1 Observation Model 
The observation model consists of the conditional probability of making an observation, given the state of the 
world, and the size of patrols (x). The tables in Figure C-11 show the whole set of observation proabilities for 
k = 0.5, and Figure C-12 displays specifically the probability of detecting a threat, given that the threat is present, 
versus the size of the patrol (x). When x = 0, the threat detection probability is 0. When x is large, the threat 
detection probability converges to 1. 

       
 Ono threat = 

 
 

 
 

 
Othreat = 

x=0   x=1 x=2 x=10 
no threat 0 0 0 · · · 0 · · · 

threat 0 0.5 0.75  · · ·  0.999  · · · 
attack 0 0 0 · · · 0 · · · 

 

   
Oattack = 

 x=0 x=1 x=2  x=10  
no threat 1 1 1 · · · 1 · · · 

threat 1 0.5 0.25 · · · 0.001 · · · 
attack 0 0 0 · · · 0 · · · 

 

 x=0 x=1 x=2  x=10  
no threat 0 0 0 · · · 0 · · · 

threat 0 0 0 · · · 0 · · · 
attack 1 1 1 · · · 1 · · · 

  

Figure C-11: Probability of Threat Detection for κ = 0.5 in Equation 6. 
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Figure C-12: Observation Model for κ = 0.5. 

C.5.2 Optimal Policy 
The optimal policy of a POMDP cannot depend on the initial state, since it is not known perfectly. Instead, it 
depends on the initial belief. Figure C-14 shows the optimal policy for our example, along with the expected 
utility resulting from following that policy( Figure C-14). (For more details see the caption of Figure C-9.) 
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Figure C-13: Optimal Policy for the Model with Improved Detection Probability  
(κ = 0.5 in Equation 6): Policy Graph (π∗(b)). 
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Figure C-14: Optimal Policy for the Model with Improved Detection Probability  
(κ = 0.5 in Equation 6): Expected utility (Uπ(b)).  

C.5.3 Comparison Between the Two Models 

Assuming we start with perfect information and in an initial state of no threat, the expected utilities are  
U = – 30.1 and U = – 26.1 for the baseline and improved cases respectively. This difference illustrates how 
POMDPs can be used to quantify the gain in operational effectiveness from improving SA. Note that both cases 
are worse than the MDP, where we had U = – 9.8 assuming an initial state of no threat. This is because a MDP 
represents the ideal case of perfect information throughout the process. Even if we start with perfect knowledge 
in the POMDP, uncertainty naturally increases as the system evolves, due to the noise introduced by the 
probability of false negatives in the observation model. 
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Annex D – SOURCE CODE 

Continuous-Time Markov Chain class (markovBD.py)

#!/usr/bin/env python3
import pickle as pkl
import numpy as np
import scipy.sparse
import scipy.stats

def makeQ(populationSize, nServers, serviceRateMultiplier,
failureRatePerSystem=1.0):

def makeRange():
return np.arange(populationSize)

# Building index pairs for non-zero elements in the Q-matrix
iUp = makeRange()
jUp = makeRange() + 1
iDown = makeRange() + 1
jDown = makeRange()
iDiag = np.arange(populationSize+1)
jDiag = iDiag
i = np.concatenate((iUp, iDown, iDiag))
j = np.concatenate((jUp, jDown, jDiag))

maximumFailureRate = failureRatePerSystem * populationSize
maximumServiceRate = maximumFailureRate * serviceRateMultiplier
# When totalServiceCapacity is split among many servers, the
# service rate is reduced at high availability (i.e. when the
# number of systems up for repair is lower than the number of servers)
if nServers == 0:

serviceRateFactors = np.zeros(populationSize)
else:

serviceRateFactors = np.concatenate(
(np.ones(populationSize-nServers+1),
np.linspace(1-1/nServers, 1/nServers, nServers-1)))

qUp = maximumServiceRate * serviceRateFactors
qDown = iDown * failureRatePerSystem
qDiag = - np.insert(qUp, len(qUp), 0) - np.insert(qDown, 0, 0)
q = np.concatenate((qUp, qDown, qDiag))

Q = scipy.sparse.coo_matrix(
(q, (i, j)), shape=(populationSize + 1, populationSize + 1))
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return Q.tocsr()

def uniformizeQ(Q, Lambda=None):
nStates = Q.shape[0]
diag = Q.diagonal()
minLambda = max(-diag)
if Lambda is None:

Lambda = minLambda
else:

if Lambda < minLambda:
raise ValueError(

'Lambda input value ('+str(Lambda)+') is too small;' +
' it must be at least '+str(minLambda))

ident = scipy.sparse.diags(np.ones(nStates)).tocsr()
U = ident + Q / Lambda
return(Lambda, U)

def deUniformize(U, Lambda):
nStates = U.shape[0]
ident = scipy.sparse.diags(np.ones(nStates))
Q = (U - ident) * Lambda
return Q

def makeEpochRange(tmin, tmax, deltaT=1/16):
return np.linspace(tmin, tmax, 1 + (tmax - tmin) / deltaT)

def insertJumps(path):
jumpIdx = np.nonzero(path[:-1, -1] - path[1:, -1])[0] + 1
nJumps = len(jumpIdx)
jumpTimes = path[jumpIdx, 0]
jumpBases = path[jumpIdx-1, 1]
newPath = np.zeros((len(path) + nJumps, 2))
oldIdx = 0
for i in range(nJumps):

newPath[oldIdx + i:jumpIdx[i] + i] = path[oldIdx:jumpIdx[i]]
newPath[jumpIdx[i] + i] = [jumpTimes[i], jumpBases[i]]
oldIdx = jumpIdx[i]

newPath[oldIdx + nJumps:] = path[oldIdx:]
return newPath
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class Propagator:

confidenceBounds = [.005, .995]

def __init__(self, Q):
self.nStates = Q.shape[0]
self.Lambda, self.U = uniformizeQ(Q)
self.matrixCache = {0: scipy.sparse.identity(self.nStates).tocsr()}

def addExponentsIfMissing(self, exponents):
existingExponents = set(self.matrixCache.keys())
newExponents = np.array(

list(set(exponents) - existingExponents), dtype='int')
newMatrices = self.U**newExponents
self.matrixCache.update(

(i, mat) for i, mat in zip(newExponents, newMatrices))

def calcExponentRange(self, t, cb=confidenceBounds):
emin, emax = [int(scipy.stats.poisson.ppf(z, self.Lambda * t))

for z in cb]
exponents = np.arange(emin, emax + 1)
coefs = scipy.stats.poisson.pmf(exponents, self.Lambda * t)
return coefs / coefs.sum(), exponents

def makeTransitionMatrix(self, t):
# find coefficients and matrix exponents for the weighted sum
coefs, exps = self.calcExponentRange(t)
# update cache with missing matrix powers (if any)
self.addExponentsIfMissing(exps)
# initialize the transition matrix with zeros
T = scipy.sparse.csr_matrix((self.nStates, self.nStates))
# build the transition matrix from the problem's uniformized matrix
for c, e in zip(coefs, exps):

T += c * self.matrixCache[e]
return T

def propagateState(self, xStart, t):
# create the transition matrix
T = self.makeTransitionMatrix(t)
# convert the start state to a sparse vector
xStart_sparse = scipy.sparse.csr_matrix(xStart)
xEnd = xStart_sparse.dot(T)
return xEnd
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def simulatePath(self, x0, t):
p = .99
nmax = int(scipy.stats.poisson.ppf(p, self.Lambda * t))
epochs = np.array([0.])
# Generate event epochs. Each iteration creates nmax epochs. If
# p is high enough, then this shoud require at most a few
# iterations.
while epochs[-1] < t:

timesBetweenEvents = np.random.exponential(1/self.Lambda, nmax)
epochs = np.concatenate(

(epochs, epochs[-1] + timesBetweenEvents.cumsum()))
# Trim epochs
epochs = epochs[epochs <= t]
# Generate states
levels = np.empty(len(epochs), dtype='int')
levels[0] = x0
stateRange = np.arange(self.nStates)
for i in range(len(epochs) - 1):

oldState = levels[i]
newState = np.random.choice(

stateRange, p=self.U[oldState].toarray().flatten())
levels[i+1] = newState

path = np.column_stack((epochs, levels))
return path

if __name__ == '__main__':
populationSize = 15
nServers = 2
serviceRateFactors = np.array([0.5, 1.0, 2.0])
Qdict = {s: makeQ(populationSize, nServers, s) for s in serviceRateFactors}
propDict = {s: Propagator(Q) for s, Q in Qdict.items()}

minEpoch, maxEpoch = (0., 3.)
epochs = makeEpochRange(minEpoch, maxEpoch)
initState = np.append(np.zeros(populationSize), 1)

########################################################################
# Calculate state vectors

def propagateStates():
# Fleet decay
stateVecs1 = {

s: {t: propDict[s].propagateState(initState, t) for t in epochs}
for s in serviceRateFactors}
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# Fleet recovery
stateVecs2 = {s1:

{t1:
{s2:
{t2:
propDict[s2].propagateState(

stateVecs1[s1][t1], t2 - t1)
for t2 in makeEpochRange(t1, maxEpoch)}

for s2 in serviceRateFactors[serviceRateFactors > s1]}
for t1 in epochs}

for s1 in serviceRateFactors}
stateVecsDict = {'decay': stateVecs1, 'recover': stateVecs2}
return stateVecsDict

# Execution time can be long - leave commented out for testing

# stateVecsDict = propagateStates()
# with open('decayRecoverData.pkl', 'wb') as f:
# pkl.dump(stateVecsDict, f)

########################################################################
# Simulate paths

def simulatePaths(nPaths):

def simulatePathsDecay(nPaths):
pathsDecay = {s:

[propDict[s].simulatePath(populationSize, maxEpoch)
for _ in range(nPaths)] for s in serviceRateFactors}

return pathsDecay

def simulatePathsRecover(pathsDecay):
def makeFullPath(pathDecay, t, s2):

p1 = pathDecay[pathDecay[:, 0] <= t]
halfwayState = p1[-1, 1]
recoveryDuration = maxEpoch - t
p2 = propDict[s2].simulatePath(halfwayState, recoveryDuration)
p2[:, 0] += t
return np.concatenate(

(p1, p2, [[maxEpoch, p2[-1, 1]]]), axis=0)
return {s1:

{t:
{s2:
[makeFullPath(pathDecay, t, s2)



ANNEX D – SOURCE CODE 

D - 6 STO-TR-SAS-107 

for pathDecay in pathsDecay[s1]]
for s2 in serviceRateFactors[serviceRateFactors > s1]}
for t in epochs} for s1 in serviceRateFactors}

pathsDecay = simulatePathsDecay(nPaths)
pathsRecover = simulatePathsRecover(pathsDecay)
pathsDict = {'decay': pathsDecay, 'recover': pathsRecover}
return pathsDict

pathsDict = simulatePaths(5)
with open('decayRecoverPaths.pkl', 'wb') as f:

pkl.dump(pathsDict, f)
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Useful functions (pomdpFunctions.py)

#!/usr/bin/env python3
"""Utility functions for the SAS-107 classes."""

import numpy as np

def truncateProbabilityVector(vec, truncatedWeight):
"""Take the smallest nonzero elements up to a combined weight of

truncatedWeight, and make them zero.

"""
vecOrder = np.argsort(vec)
removeIdx = vecOrder[vec[vecOrder].cumsum() < truncatedWeight]
vec[removeIdx] = 0.
return vec / vec.sum()

def isIterable(obj):
"""Returns True if obj is iterable"""
return hasattr(type(obj), '__iter__')

def makeTupleToIdFunc(subgroupSizes):
def tupleToId(tup, mode='raise'):

"""Translates a state tuple to a single, unique index. See the
documentation of numpy.ravel_multi_index for an explanation of the
argument 'mode'.

"""
if isIterable(tup[0]):

# input is a sequence of states. Transform it for use in
# ravel_multi_index .
arg = np.vstack(tup).T

else:
# input is a single state. Pass it directly.
arg = tup

return np.ravel_multi_index(arg, subgroupSizes + 1, mode)
return tupleToId

def makeIdToTupleFunc(subgroupSizes):
def idToTuple(idx):

"""Translates a state index to a state tuple."""
tup = np.unravel_index(idx, subgroupSizes + 1)
if isIterable(idx):

return np.vstack(tup).T
else:
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return tup
return idToTuple
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Observation model class (observationModels.py)

#!/usr/bin/env python3

import numpy as np
import scipy.sparse
import scipy.stats
import pomdpFunctions as funcs

import importlib
importlib.reload(funcs)

class ObservationModel:
"""Parent class. Child classes must implement the calcProbObs method

The implementation is fragile because it defines nActions and
nStates; these should be passed instead by the TunnelProblem
object to the ObservationModel contructor.
"""

def __init__(self,
subgroupSizes,
probSingleRedDetect_bySoldier,
probSingleRedDetect_byUav,
actionNames=['goLeft', 'goRight', 'interrupt']):

# Input parameters
self.actionNames = actionNames
self.actionDict = {actionNames[i]: i for i in range(len(actionNames))}
self.subgroupSizes = np.array(subgroupSizes)
self.probSingleRedDetect_bySoldier = probSingleRedDetect_bySoldier
self.probSingleRedDetect_byUav = probSingleRedDetect_byUav

# Transformed parameters
self.nActions = len(actionNames)
self.nStates = (self.subgroupSizes + 1).prod()
self.nObservations = (self.subgroupSizes + 1).prod()
self.tupleToId = funcs.makeTupleToIdFunc(self.subgroupSizes)
self.idToTuple = funcs.makeIdToTupleFunc(self.subgroupSizes)
# stopObs is usually chosen to be the one with index 0.
self.stopObs = np.zeros(len(self.subgroupSizes), dtype='int')
self.stopObsId = self.tupleToId(self.stopObs)

def calcProbObs(self, *args, **kwargs):
"""Placeholder. This method must be implemented by child classes."""
pass
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def makeObservationMatrices(self,
truncate_rows=True,
truncatedWeight=0.001):

"""Creates the observation model.

The observation model is a matrix where each element (i,j) corresponds
to P(obs_i|state_j). When truncate_rows is True, we force the smallest
elements on each row to zero, one by one until we have taken at most
truncatedWeight away (typically a small fraction, for example 1%).
This increases the observation model's sparsity without changing its
properties too much.

"""
OList = [scipy.sparse.dok_matrix((self.nStates, self.nObservations))

for _ in range(self.nActions)]
actionIdsRemaining = list(range(self.nActions)) # all actions
interruptId = self.actionDict['interrupt']
# the observation matrix for the 'interrupt' action is trivial
OList[interruptId][:, self.stopObsId] = 1.
# remove 'interrupt' action
actionIdsRemaining.remove(interruptId)
# Iterate over remaining actions
for actionId in actionIdsRemaining:

for i in range(self.nStates):
endState = self.idToTuple(i)
nBlue = endState[0]
nLeft, nRight = endState[1:]
# We do not consider false positives, only false
# negatives; the commander can't make the mistake of
# counting more blue or red than there are on the
# ground.
observations = [[x, y, z]

for x in [nBlue]
for y in range(nLeft+1)
for z in range(nRight+1)]

obsIds = np.ravel_multi_index(
np.array(observations).T,
self.subgroupSizes + 1)

row = np.zeros(self.nObservations)
for k in range(len(observations)):

j = obsIds[k]
obs = observations[k]
row[j] = self.calcProbObs(actionId, endState, obs)

if truncate_rows:
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row = funcs.truncateProbabilityVector(row, truncatedWeight)
OList[actionId][i] = row

return OList

class IndistinctTargetsOM(ObservationModel):
"""Detection by individual sensors, without data fusion.
"""

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

def calcProbMaxOneSide(self, nSeenMax, nActual, probSingle, nSensors):
if nSeenMax >= nActual:

pMoreSingle = 0.
else:

# Note: sf is defined as (1 - cdf).
pMoreSingle = scipy.stats.binom.sf(nSeenMax, nActual, probSingle)

if nSeenMax == 0:
pLessSingle = 0

else:
pLessSingle = scipy.stats.binom.cdf(

nSeenMax-1, nActual, probSingle)
# Prob. that at least one in group detects more than nSeenMax
pMoreGroup = 1 - scipy.stats.binom.pmf(0, nSensors, pMoreSingle)
# Prob. that all in group detect less than nSeenMax
pLessGroup = pLessSingle ** nSensors
# Leftover probability that highest detected by any in group
# is actually nSeenMax
return np.array((pLessGroup, pMoreGroup))

def calcProbObs(self, actionId, endState, obs):
"""Each sensor detects a subset of Red according to a binomial

distribution. The observation is the maximum number of Red detected by
any sensor, for each Red subgroup.

"""
actionName = self.actionNames[actionId]
nBlueNow = endState[0]
nRedNow = endState[1:]
nBlueObs = obs[0]
nRedObs = obs[-2:]
if actionName == 'interrupt':

if np.count_nonzero(obs) == 0:
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return 1.
else:

return 0.
elif nBlueObs != nBlueNow:

return 0.
else:

if actionName == 'goLeft':
orderedObs = nRedObs
orderedActuals = nRedNow

elif actionName == 'goRight':
orderedObs = reversed(nRedObs)
orderedActuals = reversed(nRedNow)

obsActionSide, obsOtherSide = orderedObs
actActionSide, actOtherSide = orderedActuals

probSoldiersLess, probSoldiersMore = self.calcProbMaxOneSide(
obsActionSide,
actActionSide,
self.probSingleRedDetect_bySoldier,
nBlueNow)

probSoldiersExactly = 1 - probSoldiersLess - probSoldiersMore
probUavActionLess, probUavActionMore = self.calcProbMaxOneSide(

obsActionSide,
actActionSide,
self.probSingleRedDetect_byUav,
1)

probUavOtherLess, probUavOtherMore = self.calcProbMaxOneSide(
obsOtherSide,
actOtherSide,
self.probSingleRedDetect_byUav,
1)

probUavActionExactly = 1 - probUavActionLess - probUavActionMore
probUavOtherExactly = 1 - probUavOtherLess - probUavOtherMore

probActionSide = probSoldiersLess * probUavActionExactly +\
probSoldiersExactly * probUavActionLess +\
probSoldiersExactly * probUavActionExactly

return probActionSide * probUavOtherExactly

class DistinctTargetsOM(ObservationModel):
"""Targets are distinguishable from each other - as if there was a
data fusion capacity that combines all individual sensor outputs
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unambiguously.

"""

def __init__(self, *args, **kwargs):
self.probObsMemo = {}
super().__init__(*args, **kwargs)

def calcProbObs(self, actionId, endState, obs):
actionName = self.actionNames[actionId]
nBlueNow = endState[0]
nRedNow = endState[1:]
nRedObs = obs[-2:]
# Simplest case is if the action is "interrupt"
if actionName == 'interrupt':

if np.count_nonzero(obs) == 0:
return 1.

else:
return 0.

else:
# Memoization saves a bit of time
if actionName == 'goLeft':

key = tuple([nBlueNow] +
list(nRedNow) +
list(nRedObs))

elif actionName == 'goRight':
key = tuple([nBlueNow] +

list(nRedNow[-1::-1]) +
list(nRedObs[-1::-1]))

if key in self.probObsMemo:
return self.probObsMemo[key]

# If prob obs isn't memoized we must calculate it.
probSingleRedDetect_fromGround = (

1 - (1 - self.probSingleRedDetect_bySoldier)**nBlueNow)
probSingleRedDetect_actionSide = (

1 - (1 - probSingleRedDetect_fromGround) *
(1 - self.probSingleRedDetect_byUav))

probSingleRedDetect_otherSide = self.probSingleRedDetect_byUav

if actionName == 'goLeft':
probLeftSingle = probSingleRedDetect_actionSide
probRightSingle = probSingleRedDetect_otherSide

elif actionName == 'goRight':
probLeftSingle = probSingleRedDetect_otherSide
probRightSingle = probSingleRedDetect_actionSide
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else:
raise(ValueError('action name "'+actionName+'" undefined.'))

probLeftObs, probRightObs = [scipy.stats.binom.pmf(k, n, p)
for k, n, p in zip(

nRedObs,
nRedNow,
[probLeftSingle, probRightSingle])]

probObs = probLeftObs * probRightObs
self.probObsMemo[key] = probObs
return probObs
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Tunnel problem class (tunnelProblem.py)

#!/usr/bin/env python3

import numpy as np
import scipy.sparse
import scipy.stats
import markovBD
import pomdpFunctions
import observationModels

import importlib
importlib.reload(pomdpFunctions)
importlib.reload(observationModels)

# Print large arrays without ellipses
np.set_printoptions(threshold=np.inf, precision=3)

class TunnelProblem:

def __init__(self,
observationModelClass=observationModels.DistinctTargetsOM,
nBlueMax=12,
nRedMax=6,
nRedMin=2,
blueEffectiveness=1.0,
redEffectiveness=1.0,
deltaTime=.1,
discountRate=0.99,
blueCasualtyReward=-1,
interruptReward=-1,
rateSingleRedDetect_bySoldier=0.01, # each period
rateSingleRedDetect_byUav=0.01):

# Set attributes
if nRedMin > nRedMax:

raise ValueError('nRedMin (' + str(nRedMin) + ')' +
' must be smaller or equal to' +
' nRedMax (' + str(nRedMax) + ').')

self.nBlueMax = nBlueMax
self.nRedMax = nRedMax
self.nRedMin = nRedMin
self.blueEffectiveness = blueEffectiveness
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self.redEffectiveness = redEffectiveness
self.deltaTime = deltaTime
self.discountRate = discountRate
self.blueCasualtyReward = blueCasualtyReward
self.interruptReward = interruptReward
# Time to detection modelled as an exponential random variable
self.probSingleRedDetect_bySoldier = (

1 - np.exp(-deltaTime * rateSingleRedDetect_bySoldier))
self.probSingleRedDetect_byUav = (

1 - np.exp(-deltaTime * rateSingleRedDetect_byUav))

# Actions
self.actionNames = ['goLeft', 'goRight', 'interrupt']
self.nActions = len(self.actionNames)
self.actionDict = {self.actionNames[i]: i

for i in range(len(self.actionNames))}

# States
self.subgroupSizes = np.array(

[self.nBlueMax, self.nRedMax, self.nRedMax])
self.nStates = (self.subgroupSizes + 1).prod()
# Utility functions
self.tupleToId = pomdpFunctions.makeTupleToIdFunc(self.subgroupSizes)
self.idToTuple = pomdpFunctions.makeIdToTupleFunc(self.subgroupSizes)

# Define the interrupt state as (0,0,0)
self.stopState = np.zeros(len(self.subgroupSizes), dtype='int')
self.stopStateId = self.tupleToId(self.stopState)

# Observations
self.observationModel = observationModelClass(

self.subgroupSizes,
self.probSingleRedDetect_bySoldier,
self.probSingleRedDetect_byUav,
self.actionNames)

self.nObservations = self.observationModel.nObservations

# 2.3 Initial belief
def makeInitialBelief(self):

initialBelief = np.zeros(self.nStates)
# The enemy is split between the left and the right routes,
# but we don't know how exactly.
initialBelief[self.tupleToId((self.nBlueMax,

self.nRedMax,
self.nRedMin))] = 1.
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initialBelief[self.tupleToId((self.nBlueMax,
self.nRedMin,
self.nRedMax))] = 1.

# Normalize the state vector
initialBelief = initialBelief / initialBelief.sum()
return initialBelief

# 3. Transition probabilities
# 3.1 Given the action, detect if state is terminal
def stateIsTerminal(self, state, actionId):

nBlue = state[0]
nRedLeft, nRedRight = state[1:]
actionName = self.actionNames[actionId]
ans = False
if nBlue == 0:

ans = True
else:

if actionName == 'goLeft' and nRedLeft == 0:
ans = True

elif actionName == 'goRight' and nRedRight == 0:
ans = True

elif actionName == 'interrupt':
ans = True

return ans

# 3.2 Calculate transition rates
def calcTransitionRate(self, actionId, startState, endState):

diff = startState - endState

# Transitions backwards are not allowed
isBackwards = (diff < 0).all()
# Transitions to self have a transition rate of zero
isToSelf = (diff == 0).all()
# If any of these conditions are met, return 0.
if isBackwards or isToSelf:

return 0.

actionName = self.actionNames[actionId]
if actionName == 'interrupt':

if (endState == self.stopState).all():
return 1.

else:
return 0.
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else: # action is 'goLeft' or 'goRight'

startStateIsTerminal = self.stateIsTerminal(startState, actionId)
transitionIsForbidden = (diff.sum() != 1)
if startStateIsTerminal or transitionIsForbidden:

return 0.

[nBlue, nRedLeft, nRedRight] = startState
[blueIsIncapacitated, redIsIncapacitatedLeft,
redIsIncapacitatedRight] = diff
if actionName == 'goLeft':

if blueIsIncapacitated:
return nRedLeft * self.redEffectiveness

elif redIsIncapacitatedLeft:
return nBlue * self.blueEffectiveness

else:
return 0.

elif actionName == 'goRight':
if blueIsIncapacitated:

return nRedRight * self.redEffectiveness
elif redIsIncapacitatedRight:

return nBlue * self.blueEffectiveness
else:

return 0.
else:

raise ValueError('action name "'+actionName+'" not recognized')

# 3.3 Calculate Q-matrices
def makeQMatrix(self, actionId):

nSubgroups = len(self.subgroupSizes)
statesFrom = self.idToTuple(range(self.nStates))
Q = scipy.sparse.dok_matrix((self.nStates, self.nStates))
for i in range(self.nStates):

# The only possible end states result from a single
# incapacitation in a single subgroup. We generate these end
# states below. On occasion, one of the generated states will
# have -1 as an element, and be invalid: this happens we are
# subtracting from an already empty substate. We take care of
# these in the nested loop that follows.
startState = statesFrom[i]
endStates = startState - np.identity(nSubgroups, dtype='int')
# To take care of invalid endStates, having -1 as an element,
# we use mode='clip' in self.tupleToId below. This transforms all
# -1 elements back to zero. The endState then becomes
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# identical to the startState, and calcTransitionRate should
# return 0.
for endState in endStates:

j = self.tupleToId(endState, mode='clip')
if j != i:

Q[i, j] = self.calcTransitionRate(
actionId, startState, endState)

# Diagonal elements qii of Q-matrix
Q.setdiag(-Q.sum(axis=1))
return Q

def makeTransitionMatrices(self):
actionSubset = ['goLeft', 'goRight']
QDict = {actionName: self.makeQMatrix(

self.actionDict[actionName]) for actionName in actionSubset}
propDict = {actionName: markovBD.Propagator(Q)

for actionName, Q in QDict.items()}
TDict = {actionName: prop.makeTransitionMatrix(self.deltaTime)

for actionName, prop in propDict.items()}
# TDict = {actionName: prop.U for actionName, prop in propDict.items()}
# For the 'interrupt' action
interruptMatrix = scipy.sparse.dok_matrix((self.nStates, self.nStates))
interruptMatrix[:, self.stopStateId] = 1.
TDict['interrupt'] = interruptMatrix
TList = [TDict[self.actionNames[i]] for i in range(self.nActions)]
return TList

# 5 Rewards

def makeCasualtyRewardDict(self, Tmat):
rewardDict = {}
for startStateId, endStateId in scipy.sparse.dok_matrix(Tmat).keys():

startState, endState = self.idToTuple((startStateId, endStateId))
nBlueCasualties = (startState - endState)[0]
rewardDict[(startStateId, endStateId)] = \

nBlueCasualties * self.blueCasualtyReward
return rewardDict

def makeInterruptRewardDict(self, Tmat):
rewardDict = {}
for startStateId, endStateId in scipy.sparse.dok_matrix(Tmat).keys():

if startStateId != self.stopStateId:
startState, endState = \

self.idToTuple((startStateId, endStateId))
rewardDict[(startStateId, endStateId)] = self.interruptReward
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return rewardDict

# 6 Make the input file using the functions above
def formatPreamble(self):

lines = [
'discount: ' + str(self.discountRate),
'values: reward',
'states: ' + str(self.nStates),
'actions: ' + str(self.nActions),
'observations: ' + str(self.observationModel.nObservations)
]

return lines

def formatBelief(self):
initialBelief = self.makeInitialBelief()
lines = ['start: ' +

np.array2string(initialBelief,
max_line_width=np.inf).strip('[]')]

return lines

def formatTransitions_compact(self, TList):
lines = []
for actionId in range(self.nActions):

Tsparse = TList[actionId].todok()
for k, v in Tsparse.items():

lines.append(' : '.join(
str(x) for x in ('T', actionId, *k)) + ' ' + str(v))

return lines

def formatTransitions_explicit(self, TList):
lines = []
for actionId in range(self.nActions):

lines += ['T : ' + str(actionId)]
Tsparse = TList[actionId]
lines += [np.array2string(

row.toarray(), max_line_width=np.inf).strip('[]')
for row in Tsparse]

return lines

def formatObs_compact(self, OList):
lines = []
for actionId in range(self.nActions):

Obs = OList[actionId]
for k, v in Obs.items():

lines.append(' : '.join(
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str(x) for x in ('O', actionId, *k)) + ' ' + str(v))
return lines

def formatObs_explicit(self, OList):
lines = []
for actionId in range(self.nActions):

Obs = OList[actionId]
lines.append(' : '.join(str(x) for x in ['O', actionId]))
lines.append(np.array2string(

Obs.toarray(), separator=' ',
max_line_width=np.inf).replace('[', '').replace(']', ''))

return lines

def formatRewards(self, TList):
interruptId = self.actionDict['interrupt']
otherIds = set(range(self.nActions)) - set([interruptId])
rewardDict = {

i: self.makeCasualtyRewardDict(TList[i]) for i in otherIds}
rewardDict[interruptId] = \

self.makeInterruptRewardDict(TList[interruptId])
lines = []
for actionId, dic in rewardDict.items():

for key, val in dic.items():
i, j = key
lines.append(

' : '.join(str(x) for x in ['R', actionId, i, j, '*']) +
' ' + str(val))

return lines

def formatFullInput(self):
TList = self.makeTransitionMatrices()
OList = self.observationModel.makeObservationMatrices()
return (self.formatPreamble() +

self.formatBelief() +
self.formatTransitions_compact(TList) +
self.formatObs_compact(OList) +
self.formatRewards(TList))
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Batch run functions (tunnelRun.py)

#!/usr/bin/env python3
import tunnelProblem
import observationModels

import numpy as np
import time
import subprocess
import uuid
import pickle
import json
import os.path
import itertools
from collections import OrderedDict

import importlib
importlib.reload(tunnelProblem)
importlib.reload(observationModels)

def makePomdpxFile(inputDir, basename, obj, addUID=False):
"""Create POMDPX input file. First, a temporary POMDP file is created.

It is then converted to POMDPX using pomdpconvert.

"""
if addUID:

basename = basename+'_'+str(uuid.uuid4())
# We must first write the input file to disk because pomdpsol does
# not take standard input.
tic = time.perf_counter()
pomdpFilePath = os.path.join(inputDir, basename + '.pomdp')
pomdpxFilePath = os.path.join(inputDir, basename + '.pomdpx')
with open(pomdpFilePath, 'w') as f:

f.write('\n'.join(obj.formatFullInput()))
toc = time.perf_counter()
print('POMDP file creation : ' + str(toc - tic) + 's.')
# convert pomdp file to pomdpx format
tic = time.perf_counter()
subprocess.run(['pomdpconvert', pomdpFilePath], stdout=subprocess.PIPE)
toc = time.perf_counter()
print('Conversion to POMDPX : ' + str(toc - tic) + 's.')
return pomdpxFilePath
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def launchPomdpsol(pomdpxFilename,
flags=['--fast', '--randomization'],
precision=.01):

"""Launches pomdpsol and collects the standard output as a string."""
exe = ['pomdpsol']
args = flags + ['--precision', str(precision)]
proc = subprocess.run(exe + args + [pomdpxFilename],

stdout=subprocess.PIPE,
stderr=subprocess.DEVNULL)

# return raw stdout, to be parsed by parseOutput
return proc.stdout

def parseOutput(s):
"""Parse standard output from pomdpsol."""
lines = [line.strip() for line in s.split(b'\n')]
lowerBound, upperBound = (float(x) for x in lines[-7].split()[3:5])
return {'low': lowerBound, 'high': upperBound}

def makeInputFileName(params):
longShortTransl = {'nBlueMax': 'nb',

'nRedMax': 'nrmax',
'nRedMin': 'nrmin',
'deltaTime': 'dt',
'blueEffectiveness': 'beff',
'interruptReward': 'rew',
'rateSingleRedDetect_bySoldier': 'rsol',
'rateSingleRedDetect_byUav': 'ruav'}

filename = '_'.join([short + str(params[long])
for long, short in longShortTransl.items()])

return filename

def singleRun(inputParameters, inputDir='./', outputDir='./',
basename='singleRun', verbose=True):

tp = tunnelProblem.TunnelProblem(**inputParameters)
if verbose:

print('Started...')
pomdpxFilePath = os.path.join(inputDir, basename + '.pomdpx')
if os.path.exists(pomdpxFilePath):

print(pomdpxFilePath +
' already exists; skipping POMDPX file creation.')

else:
makePomdpxFile(inputDir, basename, tp)
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tic = time.perf_counter()
outputFilePath = os.path.join(outputDir, basename + '.out')
if os.path.exists(outputFilePath):

print(outputFilePath +
' already exists; skipping calculation.')

with open(outputFilePath, 'rb') as f:
rawOutput = f.read()

else:
# launch solver and store standard output for future runs
rawOutput = launchPomdpsol(pomdpxFilePath)
with open(outputFilePath, 'wb') as f:

f.write(rawOutput)
result = parseOutput(rawOutput)
toc = time.perf_counter()
if verbose:

print('Computing solution: '+str(round(toc-tic))+'s.')
print('Value bounds: '+str(result))

return tp, result

def batchRun(params, inputDir, outputDir, batchName, verbose=True):
# Find parameters for which a range of values has been provided
gridParams = {}
for key, val in params.items():

if hasattr(val, '__iter__'):
gridParams[key] = val

tuples = itertools.product(*gridParams.values())
output = []
for tup in tuples:

if verbose:
print('**************************************************')
print('Batch iteration parameters: {' +

', '.join([str(k) + ': ' + str(v)
for k, v in zip(gridParams.keys(), tup)]) +

'}')
pdict = OrderedDict(list(params.items()) +

list(zip(gridParams.keys(), tup)))
tp, result = singleRun(inputParameters=pdict,

inputDir=inputDir,
outputDir=outputDir,
basename=makeInputFileName(pdict))

# No need to save a copy of the observation model
del(pdict['observationModelClass'])
output.append({'params': pdict, 'result': result})

# Pickle the output
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with open(outputDir + '/' + batchName + '.pkl', 'wb') as f:
pickle.dump(output, f)

# Make grid
grid = [[x['params'][k] for k in gridParams.keys()] +

[np.mean(list(x['result'].values()))]
for x in output]

# Export grid to JSON so it can be read easily into R
with open(outputDir + '/' + batchName + '.json', 'w') as f:

json.dump(grid, f)
return output

if __name__ == "__main__":

sarsopDir = '../SarsopInputFiles'
os.makedirs(sarsopDir, exist_ok=True)
outputDir = '../Data'
os.makedirs(outputDir, exist_ok=True)
batchOutputDir = '../BatchOutput'
os.makedirs(batchOutputDir, exist_ok=True)

myInput = OrderedDict(
{'observationModelClass': observationModels.DistinctTargetsOM,
'nBlueMax': 12,
'nRedMax': 6,
'nRedMin': 1,
'deltaTime': .1,
'blueEffectiveness': 1.,
'interruptReward': -1,
'rateSingleRedDetect_bySoldier': 1.,
'rateSingleRedDetect_byUav': 1.})

# Single run, to test if everything works
tp, result = singleRun(

inputParameters=myInput,
inputDir=sarsopDir,
outputDir=outputDir,
basename=makeInputFileName(myInput))

# Batch runs

# sensors: soldier vs uav
gridLength = 6
batchOutput = batchRun(

params=OrderedDict(
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list(myInput.items()) +
[['rateSingleRedDetect_bySoldier',
np.geomspace(0.01, 0.4, gridLength)],
['rateSingleRedDetect_byUav',
np.geomspace(0.1, 4.0, gridLength)]]),

inputDir=sarsopDir,
outputDir=outputDir,
batchName='soldierVsUav')

# soldiers: sensor vs protection
gridLength = 6
newParams = [['rateSingleRedDetect_bySoldier',

np.geomspace(0.01, 0.4, gridLength)],
['blueEffectiveness',
np.linspace(1., 2., gridLength)]]

# Move parameters so they are in the right order for plotting
[myInput.move_to_end(k) for k, v in newParams]
batchOutput = batchRun(

OrderedDict(list(myInput.items()) + newParams),
inputDir=sarsopDir,
outputDir=outputDir,
batchName='detectionVsEffectiveness')

# time interval between decisions
gridLength = 20
batchOutput = batchRun(

params=OrderedDict(
list(myInput.items()) +
# Equal time intervals on log scale
[['deltaTime',

np.geomspace(0.025, 2., gridLength)]]),
inputDir=sarsopDir,
outputDir=outputDir,
batchName='timeIntervals')
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Make figures (makeFigs.R)

library("tidyverse")
library("directlabels")
library("ggthemes")
library("jsonlite")
library("gridExtra")
library("extrafont")

loadJsonData <- function(path) {
## jsonFilename <- paste(basename, ".json", sep="")
rawData <- jsonlite::fromJSON(readChar(path, file.info(path)$size))
## Using tibble's default naming scheme for columns ("V1", etc) would
## be convenient. Unfortunately that results in an error that I
## haven't been able to debug yet. So I name columns "x", "y", etc
nc <- ncol(rawData)
tidyData <- rawData %>% as_tibble() %>% setNames(c("x", "y", "z")[1:nc])
return(tidyData)

}

## Plot functions

## Function to extract a legend
## from: https://stackoverflow.com/a/21279370/997123
## also: https://github.com/tidyverse/ggplot2/wiki/

Share-a-legend-between-two-ggplot2-graphs
g_legend <- function(a.gplot){
tmp <- ggplot_gtable(ggplot_build(a.gplot))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)

}

makeDummyPlotWithLegend <- function() {
ggplot(data=tibble(x=c(1,2,1,2),

y=c(1,2,2,1),
z=c('a','a','b','b')),

aes(x,y,color=z)) +
geom_line() +
scale_colour_manual(

name="Isocontours",
values=c("blue", "red"),
breaks=c("a", "b"),
labels=c("Expected mission outcome", "Budget (notional)")) +

theme_base() +
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theme(legend.key.height = unit(.025, "npc"),
legend.key.width = unit(.05, "npc"),
text = element_text(size=myFontSize)) +

## line below from: https://stackoverflow.com/a/31519478/997123
guides(color = guide_legend(override.aes = list(linetype = 
c("solid", "dashed"))))

}

stitchLegend <- function(a.plot, legend) {
return(arrangeGrob(a.plot , legend,

widths=c(3/4, 1/4),
ncol = 2))

}

plotContour <- function(data, b0, xtan, ytan, mtan, fontSize=10) {
xbreaks <- sort(unique(data$x))
ybreaks <- sort(unique(data$y))
c <- mtan * xtan / (ytan - b0)
a <- (ytan - b0) / xtan**c
plot <- ggplot(data=data, aes(x, y, z=z)) +

stat_function(fun=function(x) {a*x**c + b0}, colour="red", linetype=2) +
## there will be a warning about esthetic "fill" being
## ignored, but it is in fact necessary for direct.label to
## work.
stat_contour(aes(fill=..level..), size=.5) +
ylim(c(min(data$y), max(data$y))) +
xlim(c(min(data$x), max(data$x))) +
theme_classic() +
geom_point(colour="gray") +
theme(text = element_text(size = fontSize)) +
annotate("point", x = xtan, y = ytan,

color = "red") +
annotate("text", x = xtan, y = ytan,

label = "optimal investment\n(saves most lives)",
colour = "red",
hjust = 0.1,
vjust = -0.5,
size = 3)

labelled <- direct.label(plot, list("top.pieces", colour="blue", cex=.75))
}

##
## Main section
##
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myFontSize = 10
datadir = "../Data"
figDir = "../Figures/"
if (!dir.exists(figDir))
{

dir.create(figDir)
}

## 1. Contour plots
basenames = c("soldierVsUav", "detectionVsEffectiveness")
paths = paste0(datadir, "/", basenames, ".json")
myData <- lapply(paths, loadJsonData) %>% setNames(basenames)
## These parameters specify the curve for the fake budget isocontour in each plot.
budgetParams <- list("soldierVsUav" = list(b0=3.4,

xtan=0.15,
ytan=2.65,
mtan=-9),

"detectionVsEffectiveness" = list(b0=1.75,
xtan=0.25,
ytan=1.65,
mtan=-.8))

## Combine data and budgetParams in plot
myPlots <- lapply(basenames,

function(name){
do.call(plotContour,

c(list(data=myData[[name]]),
budgetParams[[name]]))})

names(myPlots) <- basenames

## Label axes
myPlots$soldierVsUav <- myPlots$soldierVsUav +

xlab("Detection rate by individual dismounts") +
ylab("Detection rate by UAV")

myPlots$detectionVsEffectiveness <- myPlots$detectionVsEffectiveness +
xlab("Detection rate by individual dismounts") +
ylab("Rel. effectiveness of weapons and PPE")

## This is the best way I found to add a legend to the contour plots
## with fake budget isocontour: create a dummy plot, extract its
## legend, and arrange it side by side with the contour plot.
legend <- g_legend(makeDummyPlotWithLegend())
myPlots$soldierVsUav <- stitchLegend(myPlots$soldierVsUav, legend)
myPlots$detectionVsEffectiveness <-

stitchLegend(myPlots$detectionVsEffectiveness, legend)
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## Save plots
lapply(seq_along(myPlots),

function(i){ggsave(paste0(figDir, names(myPlots)[i], ".pdf"),
myPlots[[i]],
width=unit(6,"in"),
height=unit(4, "in"))}) %>% invisible

## 2. Decision period vs lives at risk
basename <- "timeIntervals"
myData <- loadJsonData(paste0(datadir, "/", basename, ".json"))
## annotation origin point
xa1 <- min(myData$x) - 0.005
ya1 <- 0.6
xa2 <- 0.1
ya2 <- 0.8
ggplot(myData, aes(x, -y)) +

geom_line() +
geom_point() +
## baseline
## annotate("segment",

x=0,##
##
##
##
##

y=0,
xend=max(myData$x),
yend=0,
linetype=2) +

annotate("segment",
x=0,
y=1,
xend=max(myData$x),
yend=1,
linetype=2) +

scale_x_log10(breaks = c(0.025, 0.05, 0.1, 0.25, 0.5, 1.)) +
theme_classic() +
xlab("Time interval between decisions (log scale)") +
ylab("Expected lives at risk") +
ylim(0, -min(myData$y)+0.05) +
## arrow to origin
annotate("segment",

x=xa1,
y=ya1,
xend=0,
yend=1,
arrow=arrow(length=unit(0.02, "npc"), type="closed", angle=20),
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color="blue") +
## label about interrupt cost
annotate("text", x = xa1, y = ya1 - .040,

label = "Penalty for aborting mission",
colour = "blue",
hjust = 0,
vjust = -0.5,
size = 3) +

annotate("text", x = xa1, y = ya1,
label = "(interruptReward = -1)",
colour = "blue",
family = "Courier New",
hjust = 0,
vjust = -0.5,
size = 3) +

## arrow to default dt
annotate("segment",

x=xa2,
y=ya2,
xend=0.1,
yend=0,
## arrow=arrow(length=unit(0.02, "npc"), type="closed", angle=20),
color="blue",
linetype=2) +

## label about interrupt cost
annotate("text", x = xa2, y = ya2 + .040,

label = "Default used in other examples",
colour = "blue",
hjust = 0.5,
vjust = -0.5,
size = 3) +

annotate("text", x = xa2, y = ya2,
label = "(deltaTime = 0.1)",
colour = "blue",
family = "Courier New",
hjust = 0.5,
vjust = -0.5,
size = 3)

ggsave(paste0(figDir, "/", basename, ".pdf"),
width=unit(6,"in"), height=unit(4, "in"))
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